BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 28389559)

  • 1. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation.
    Machado LESF; Shen TL; Page R; Peti W
    J Biol Chem; 2017 May; 292(21):8786-8796. PubMed ID: 28389559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Paradigm for KIM-PTP Drug Discovery: Identification of Allosteric Sites with Potential for Selective Inhibition Using Virtual Screening and LEI Analysis.
    Adams J; Thornton BP; Tabernero L
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of substrate recognition by hematopoietic tyrosine phosphatase.
    Critton DA; Tortajada A; Stetson G; Peti W; Page R
    Biochemistry; 2008 Dec; 47(50):13336-45. PubMed ID: 19053285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide.
    Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D
    Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation.
    Chiarugi P; Fiaschi T; Taddei ML; Talini D; Giannoni E; Raugei G; Ramponi G
    J Biol Chem; 2001 Sep; 276(36):33478-87. PubMed ID: 11429404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity.
    Netto LES; Machado LESF
    FEBS J; 2022 Sep; 289(18):5480-5504. PubMed ID: 35490402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues.
    Cook NL; Moeke CH; Fantoni LI; Pattison DI; Davies MJ
    Free Radic Biol Med; 2016 Jan; 90():195-205. PubMed ID: 26616646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential interaction of the tyrosine phosphatases PTP-SL, STEP and HePTP with the mitogen-activated protein kinases ERK1/2 and p38alpha is determined by a kinase specificity sequence and influenced by reducing agents.
    Muñoz JJ; Tárrega C; Blanco-Aparicio C; Pulido R
    Biochem J; 2003 May; 372(Pt 1):193-201. PubMed ID: 12583813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox regulation of MAP kinase phosphatase 3.
    Seth D; Rudolph J
    Biochemistry; 2006 Jul; 45(28):8476-87. PubMed ID: 16834321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modified cysteinyl-labeling assay reveals reversible oxidation of protein tyrosine phosphatases in angiomyolipoma cells.
    Boivin B; Zhang S; Arbiser JL; Zhang ZY; Tonks NK
    Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9959-64. PubMed ID: 18632564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling.
    Cho SH; Lee CH; Ahn Y; Kim H; Kim H; Ahn CY; Yang KS; Lee SR
    FEBS Lett; 2004 Feb; 560(1-3):7-13. PubMed ID: 15017976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects.
    Tanner JJ; Parsons ZD; Cummings AH; Zhou H; Gates KS
    Antioxid Redox Signal; 2011 Jul; 15(1):77-97. PubMed ID: 20919935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif.
    Pulido R; Zúñiga A; Ullrich A
    EMBO J; 1998 Dec; 17(24):7337-50. PubMed ID: 9857190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential oxidation of the second phosphatase domain of receptor-like PTP-alpha revealed by an antibody against oxidized protein tyrosine phosphatases.
    Persson C; Sjöblom T; Groen A; Kappert K; Engström U; Hellman U; Heldin CH; den Hertog J; Ostman A
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):1886-91. PubMed ID: 14762163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H2O2-induced intermolecular disulfide bond formation between receptor protein-tyrosine phosphatases.
    van der Wijk T; Overvoorde J; den Hertog J
    J Biol Chem; 2004 Oct; 279(43):44355-61. PubMed ID: 15294898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration.
    Frijhoff J; Dagnell M; Godfrey R; Ostman A
    Antioxid Redox Signal; 2014 May; 20(13):1994-2010. PubMed ID: 24111825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation.
    Barrett DM; Black SM; Todor H; Schmidt-Ullrich RK; Dawson KS; Mikkelsen RB
    J Biol Chem; 2005 Apr; 280(15):14453-61. PubMed ID: 15684422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.