BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28389715)

  • 1. Neural field model of seizure-like activity in isolated cortex.
    Zhao X; Robinson PA
    J Comput Neurosci; 2017 Jun; 42(3):307-321. PubMed ID: 28389715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial cortical deafferentation promotes development of paroxysmal activity.
    Topolnik L; Steriade M; Timofeev I
    Cereb Cortex; 2003 Aug; 13(8):883-93. PubMed ID: 12853375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity.
    Steriade M; Amzica F
    J Neurophysiol; 1994 Nov; 72(5):2051-69. PubMed ID: 7884444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of absence seizure dynamics on physiological parameter evolution.
    Deeba F; Sanz-Leon P; Robinson PA
    J Theor Biol; 2018 Oct; 454():11-21. PubMed ID: 29807025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons.
    Timofeev I; Grenier F; Steriade M
    J Neurophysiol; 1998 Sep; 80(3):1495-513. PubMed ID: 9744954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis.
    Kannan L; Vogrin S; Bailey C; Maixner W; Harvey AS
    Brain; 2016 Oct; 139(Pt 10):2653-2667. PubMed ID: 27497492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased propensity to seizures after chronic cortical deafferentation in vivo.
    Nita DA; Cissé Y; Timofeev I; Steriade M
    J Neurophysiol; 2006 Feb; 95(2):902-13. PubMed ID: 16236784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study on concordance of ictal and interictal epileptiform activity in patients with tuberous sclerosis complex].
    Yang Z; Guo Q; Zhuang J; Liu X; Xiong H; Wu Y; Wang S; Chang X; Zhang Y; Bao X; Jiang Y; Qin J
    Zhonghua Er Ke Za Zhi; 2014 Apr; 52(4):292-7. PubMed ID: 24915918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ictal electrographic pattern of focal subcortical seizures induced by sound in rats.
    Vinogradova LV; Grinenko OA
    Brain Res; 2016 Mar; 1635():161-8. PubMed ID: 26820637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From cognitive networks to seizures: stimulus evoked dynamics in a coupled cortical network.
    Lee J; Ermentrout B; Bodner M
    Chaos; 2013 Dec; 23(4):043111. PubMed ID: 24387550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic modulation of cortical oscillatory dynamics.
    Liljenström H; Hasselmo ME
    J Neurophysiol; 1995 Jul; 74(1):288-97. PubMed ID: 7472331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative properties and transfer function of cortical neurons initiating absence seizures in a rat genetic model.
    Williams MS; Altwegg-Boussac T; Chavez M; Lecas S; Mahon S; Charpier S
    J Physiol; 2016 Nov; 594(22):6733-6751. PubMed ID: 27311433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow-wave oscillations in a corticothalamic model of sleep and wake.
    Zhao X; Kim JW; Robinson PA
    J Theor Biol; 2015 Apr; 370():93-102. PubMed ID: 25659479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperexcitability of intact neurons underlies acute development of trauma-related electrographic seizures in cats in vivo.
    Topolnik L; Steriade M; Timofeev I
    Eur J Neurosci; 2003 Aug; 18(3):486-96. PubMed ID: 12911745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K-complexes, spindles, and ERPs as impulse responses: unification via neural field theory.
    Zobaer MS; Anderson RM; Kerr CC; Robinson PA; Wong KK; D'Rozario AL
    Biol Cybern; 2017 Apr; 111(2):149-164. PubMed ID: 28251306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling absence seizure dynamics: implications for basic mechanisms and measurement of thalamocortical and corticothalamic latencies.
    Roberts JA; Robinson PA
    J Theor Biol; 2008 Jul; 253(1):189-201. PubMed ID: 18407293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical diseases of brain systems: different routes to epileptic seizures.
    Lopes da Silva FH; Blanes W; Kalitzin SN; Parra J; Suffczynski P; Velis DN
    IEEE Trans Biomed Eng; 2003 May; 50(5):540-8. PubMed ID: 12769430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal synchrony and the transition to spontaneous seizures.
    Grasse DW; Karunakaran S; Moxon KA
    Exp Neurol; 2013 Oct; 248():72-84. PubMed ID: 23707218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Electrical activity of the neurons in an epileptic focus created in an isolated strip of cerebral cortex by electrical stimulation].
    Lopantsev VE; Taranenko VD
    Neirofiziologiia; 1988; 20(3):357-65. PubMed ID: 3140041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Thalamus Versus Cortex in Epilepsy: Evidence from Human Ictal Centromedian Recordings in Patients Assessed for Deep Brain Stimulation.
    Martín-López D; Jiménez-Jiménez D; Cabañés-Martínez L; Selway RP; Valentín A; Alarcón G
    Int J Neural Syst; 2017 Nov; 27(7):1750010. PubMed ID: 28030998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.