BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28389918)

  • 1. Quantitative analysis of the cysteine redoxome by iodoacetyl tandem mass tags.
    Shakir S; Vinh J; Chiappetta G
    Anal Bioanal Chem; 2017 Jun; 409(15):3821-3830. PubMed ID: 28389918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mix-and-Match Proteomics: Using Advanced Iodoacetyl Tandem Mass Tag Multiplexing To Investigate Cysteine Oxidation Changes with Respect to Protein Expression.
    Prakash AS; Kabli AMF; Bulleid N; Burchmore R
    Anal Chem; 2018 Dec; 90(24):14173-14180. PubMed ID: 30452864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass spectrometry and redox proteomics: applications in disease.
    Butterfield DA; Gu L; Di Domenico F; Robinson RA
    Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of cellular protein and redox imbalance using SILAC-iodoTMT methodology.
    Vajrychova M; Salovska B; Pimkova K; Fabrik I; Tambor V; Kondelova A; Bartek J; Hodny Z
    Redox Biol; 2019 Jun; 24():101227. PubMed ID: 31154163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome screens for Cys residues oxidation: the redoxome.
    Chiappetta G; Ndiaye S; Igbaria A; Kumar C; Vinh J; Toledano MB
    Methods Enzymol; 2010; 473():199-216. PubMed ID: 20513479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology.
    Wani R; Murray BW
    Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling thiol redox proteome using isotope tagging mass spectrometry.
    Parker J; Zhu N; Zhu M; Chen S
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22472559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling.
    Giese J; Eirich J; Post F; Schwarzländer M; Finkemeier I
    Methods Mol Biol; 2022; 2363():215-234. PubMed ID: 34545496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of protein post-translational modifications using isobaric tandem mass tags.
    Liang HC; Lahert E; Pike I; Ward M
    Bioanalysis; 2015; 7(3):383-400. PubMed ID: 25697195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection.
    Chung HS; Murray CI; Venkatraman V; Crowgey EL; Rainer PP; Cole RN; Bomgarden RD; Rogers JC; Balkan W; Hare JM; Kass DA; Van Eyk JE
    Circ Res; 2015 Oct; 117(10):846-57. PubMed ID: 26338901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.
    Su D; Gaffrey MJ; Guo J; Hatchell KE; Chu RK; Clauss TR; Aldrich JT; Wu S; Purvine S; Camp DG; Smith RD; Thrall BD; Qian WJ
    Free Radic Biol Med; 2014 Feb; 67():460-70. PubMed ID: 24333276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine tagging for MS-based proteomics.
    Giron P; Dayon L; Sanchez JC
    Mass Spectrom Rev; 2011; 30(3):366-95. PubMed ID: 21500242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cysTMTRAQ-An integrative method for unbiased thiol-based redox proteomics.
    Parker J; Balmant K; Zhu F; Zhu N; Chen S
    Mol Cell Proteomics; 2015 Jan; 14(1):237-42. PubMed ID: 25316711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry-based quantitative proteomics for dissecting multiplexed redox cysteine modifications in nitric oxide-protected cardiomyocyte under hypoxia.
    Pan KT; Chen YY; Pu TH; Chao YS; Yang CY; Bomgarden RD; Rogers JC; Meng TC; Khoo KH
    Antioxid Redox Signal; 2014 Mar; 20(9):1365-81. PubMed ID: 24152285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SILAC-IodoTMT for Assessment of the Cellular Proteome and Its Redox Status.
    Vajrychova M; Salovska B; Pimkova K; Fabrik I; Hodny Z
    Methods Mol Biol; 2023; 2603():259-268. PubMed ID: 36370286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.