These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 28389925)
1. Plant dehydrins: shedding light on structure and expression patterns of dehydrin gene family in barley. Abedini R; GhaneGolmohammadi F; PishkamRad R; Pourabed E; Jafarnezhad A; Shobbar ZS; Shahbazi M J Plant Res; 2017 Jul; 130(4):747-763. PubMed ID: 28389925 [TBL] [Abstract][Full Text] [Related]
2. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance. Liang J; Chen X; Deng G; Pan Z; Zhang H; Li Q; Yang K; Long H; Yu M BMC Genomics; 2017 Oct; 18(1):775. PubMed ID: 29020945 [TBL] [Abstract][Full Text] [Related]
3. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern. Rezaei MK; Shobbar ZS; Shahbazi M; Abedini R; Zare S J Plant Physiol; 2013 Sep; 170(14):1277-84. PubMed ID: 23664583 [TBL] [Abstract][Full Text] [Related]
4. Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. Hu L; Wang Z; Du H; Huang B J Plant Physiol; 2010 Jan; 167(2):103-9. PubMed ID: 19716198 [TBL] [Abstract][Full Text] [Related]
5. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Suprunova T; Krugman T; Distelfeld A; Fahima T; Nevo E; Korol A Plant Mol Biol; 2007 May; 64(1-2):17-34. PubMed ID: 17238046 [TBL] [Abstract][Full Text] [Related]
6. Physiological and molecular analysis on root growth associated with the tolerance to aluminum and drought individual and combined in Tibetan wild and cultivated barley. Ahmed IM; Nadira UA; Cao F; He X; Zhang G; Wu F Planta; 2016 Apr; 243(4):973-85. PubMed ID: 26748913 [TBL] [Abstract][Full Text] [Related]
7. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Guo P; Baum M; Grando S; Ceccarelli S; Bai G; Li R; von Korff M; Varshney RK; Graner A; Valkoun J J Exp Bot; 2009; 60(12):3531-44. PubMed ID: 19561048 [TBL] [Abstract][Full Text] [Related]
8. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related]
9. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Stival Sena J; Giguère I; Rigault P; Bousquet J; Mackay J Tree Physiol; 2018 Mar; 38(3):442-456. PubMed ID: 29040752 [TBL] [Abstract][Full Text] [Related]
10. [Molecular cloning and protein structure prediction of barley (Hordeum vulgare L.) Dhn6 gene and its expression pattern under dehydration conditions]. Qian G; Ping JJ; Zhang Z; Luo SY; Li XY; Yang MZ; Zhang D Yi Chuan; 2011 Mar; 33(3):270-7. PubMed ID: 21402536 [TBL] [Abstract][Full Text] [Related]
11. Differential physiological and molecular response of barley genotypes to water deficit. de Mezer M; Turska-Taraska A; Kaczmarek Z; Glowacka K; Swarcewicz B; Rorat T Plant Physiol Biochem; 2014 Jul; 80():234-48. PubMed ID: 24811679 [TBL] [Abstract][Full Text] [Related]
13. Identification of HvLRX, a new dehydration and light responsive gene in Tibetan hulless barley (Hordeum vulgare var. nudum). Liang J; Zhang H; Yi L; Tang Y; Long H; Yu M; Deng G Genes Genomics; 2021 Dec; 43(12):1445-1461. PubMed ID: 34480266 [TBL] [Abstract][Full Text] [Related]
14. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes. Zolotarov Y; Strömvik M PLoS One; 2015; 10(6):e0129016. PubMed ID: 26114291 [TBL] [Abstract][Full Text] [Related]
15. Changes in protein abundance and activity induced by drought during generative development of winter barley (Hordeum vulgare L.). Gołębiowska-Pikania G; Kopeć P; Surówka E; Janowiak F; Krzewska M; Dubas E; Nowicka A; Kasprzyk J; Ostrowska A; Malaga S; Hura T; Żur I J Proteomics; 2017 Oct; 169():73-86. PubMed ID: 28751243 [TBL] [Abstract][Full Text] [Related]
16. Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. Yang Y; He M; Zhu Z; Li S; Xu Y; Zhang C; Singer SD; Wang Y BMC Plant Biol; 2012 Aug; 12():140. PubMed ID: 22882870 [TBL] [Abstract][Full Text] [Related]
17. Comparative Analysis of Dehydrins from Woody Plant Species. Karas M; Vešelényiová D; Boszorádová E; Nemeček P; Gerši Z; Moravčíková J Biomolecules; 2024 Feb; 14(3):. PubMed ID: 38540671 [TBL] [Abstract][Full Text] [Related]
18. Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley. Qiu CW; Liu L; Feng X; Hao PF; He X; Cao F; Wu F Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316632 [TBL] [Abstract][Full Text] [Related]
19. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. He X; Zeng J; Cao F; Ahmed IM; Zhang G; Vincze E; Wu F J Exp Bot; 2015 Dec; 66(22):7405-19. PubMed ID: 26417018 [TBL] [Abstract][Full Text] [Related]
20. Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Kausar R; Arshad M; Shahzad A; Komatsu S Amino Acids; 2013 Feb; 44(2):345-59. PubMed ID: 22707152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]