BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 28390173)

  • 1. Structure of a AAA+ unfoldase in the process of unfolding substrate.
    Ripstein ZA; Huang R; Augustyniak R; Kay LE; Rubinstein JL
    Elife; 2017 Apr; 6():. PubMed ID: 28390173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study.
    Huang R; Ripstein ZA; Augustyniak R; Lazniewski M; Ginalski K; Kay LE; Rubinstein JL
    Proc Natl Acad Sci U S A; 2016 Jul; 113(29):E4190-9. PubMed ID: 27402735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates.
    Augustyniak R; Kay LE
    Proc Natl Acad Sci U S A; 2018 May; 115(21):E4786-E4795. PubMed ID: 29735657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum.
    Rockel B; Jakana J; Chiu W; Baumeister W
    J Mol Biol; 2002 Apr; 317(5):673-81. PubMed ID: 11955016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VAT, the thermoplasma homolog of mammalian p97/VCP, is an N domain-regulated protein unfoldase.
    Gerega A; Rockel B; Peters J; Tamura T; Baumeister W; Zwickl P
    J Biol Chem; 2005 Dec; 280(52):42856-62. PubMed ID: 16236712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, sequencing and expression of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum.
    Pamnani V; Tamura T; Lupas A; Peters J; Cejka Z; Ashraf W; Baumeister W
    FEBS Lett; 1997 Mar; 404(2-3):263-8. PubMed ID: 9119075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum as studied by electron tomography.
    Rockel B; Walz J; Hegerl R; Peters J; Typke D; Baumeister W
    FEBS Lett; 1999 May; 451(1):27-32. PubMed ID: 10356978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The solution structure of VAT-N reveals a 'missing link' in the evolution of complex enzymes from a simple betaalphabetabeta element.
    Coles M; Diercks T; Liermann J; Gröger A; Rockel B; Baumeister W; Koretke KK; Lupas A; Peters J; Kessler H
    Curr Biol; 1999 Oct; 9(20):1158-68. PubMed ID: 10531028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active conformation of the p97-p47 unfoldase complex.
    Xu Y; Han H; Cooney I; Guo Y; Moran NG; Zuniga NR; Price JC; Hill CP; Shen PS
    Nat Commun; 2022 May; 13(1):2640. PubMed ID: 35552390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture and assembly of the archaeal Cdc48*20S proteasome.
    Barthelme D; Chen JZ; Grabenstatter J; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):E1687-94. PubMed ID: 24711419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine.
    Barthelme D; Sauer RT
    Science; 2012 Aug; 337(6096):843-6. PubMed ID: 22837385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The archaeal proteasome is regulated by a network of AAA ATPases.
    Forouzan D; Ammelburg M; Hobel CF; Ströh LJ; Sessler N; Martin J; Lupas AN
    J Biol Chem; 2012 Nov; 287(46):39254-62. PubMed ID: 22992741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase.
    Barthelme D; Sauer RT
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3327-32. PubMed ID: 23401548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy.
    Campbell MG; Veesler D; Cheng A; Potter CS; Carragher B
    Elife; 2015 Mar; 4():. PubMed ID: 25760083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capsids of tricorn protease studied by electron cryomicroscopy.
    Walz J; Koster AJ; Tamura T; Baumeister W
    J Struct Biol; 1999 Dec; 128(1):65-8. PubMed ID: 10600560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding.
    Twomey EC; Ji Z; Wales TE; Bodnar NO; Ficarro SB; Marto JA; Engen JR; Rapoport TA
    Science; 2019 Aug; 365(6452):. PubMed ID: 31249135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisystem Proteinopathy Mutations in VCP/p97 Increase NPLOC4·UFD1L Binding and Substrate Processing.
    Blythe EE; Gates SN; Deshaies RJ; Martin A
    Structure; 2019 Dec; 27(12):1820-1829.e4. PubMed ID: 31623962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the cooperativity of
    Huang R; Pérez F; Kay LE
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9846-E9854. PubMed ID: 29087330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine.
    Liu J; Mei Z; Li N; Qi Y; Xu Y; Shi Y; Wang F; Lei J; Gao N
    J Biol Chem; 2013 Jun; 288(24):17597-608. PubMed ID: 23595989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotary and unidirectional metal shadowing of VAT: localization of the substrate-binding domain.
    Rockel B; Guckenberger R; Gross H; Tittmann P; Baumeister W
    J Struct Biol; 2000 Nov; 132(2):162-8. PubMed ID: 11162738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.