These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28390338)

  • 1. Efficient algorithms for solving the non-linear vibrational coupled-cluster equations using full and decomposed tensors.
    Madsen NK; Godtliebsen IH; Christiansen O
    J Chem Phys; 2017 Apr; 146(13):134110. PubMed ID: 28390338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations.
    Madsen NK; Godtliebsen IH; Losilla SA; Christiansen O
    J Chem Phys; 2018 Jan; 148(2):024103. PubMed ID: 29331116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculating vibrational excitation energies using tensor-decomposed vibrational coupled-cluster response theory.
    Madsen NK; Jensen RB; Christiansen O
    J Chem Phys; 2021 Feb; 154(5):054113. PubMed ID: 33557569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm.
    Thomsen B; Hansen MB; Seidler P; Christiansen O
    J Chem Phys; 2012 Mar; 136(12):124101. PubMed ID: 22462829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensor decomposition techniques in the solution of vibrational coupled cluster response theory eigenvalue equations.
    Godtliebsen IH; Hansen MB; Christiansen O
    J Chem Phys; 2015 Jan; 142(2):024105. PubMed ID: 25591336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient algorithm for solving nonlinear equations with a minimal number of trial vectors: applications to atomic-orbital based coupled-cluster theory.
    Ziółkowski M; Weijo V; Jorgensen P; Olsen J
    J Chem Phys; 2008 May; 128(20):204105. PubMed ID: 18513008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational coupled cluster theory with full two-mode and approximate three-mode couplings: the VCC[2pt3] model.
    Seidler P; Matito E; Christiansen O
    J Chem Phys; 2009 Jul; 131(3):034115. PubMed ID: 19624189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated multimodel Newton-type algorithms for faster convergence of ground and excited state coupled cluster equations.
    Kjønstad EF; Folkestad SD; Koch H
    J Chem Phys; 2020 Jul; 153(1):014104. PubMed ID: 32640809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensor decomposition and vibrational coupled cluster theory.
    Godtliebsen IH; Thomsen B; Christiansen O
    J Phys Chem A; 2013 Aug; 117(32):7267-79. PubMed ID: 23662994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculating vibrational spectra without determining excited eigenstates: Solving the complex linear equations of damped response theory for vibrational configuration interaction and vibrational coupled cluster states.
    Godtliebsen IH; Christiansen O
    J Chem Phys; 2015 Oct; 143(13):134108. PubMed ID: 26450293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational coupled cluster response theory: a general implementation.
    Seidler P; Sparta M; Christiansen O
    J Chem Phys; 2011 Feb; 134(5):054119. PubMed ID: 21303104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approximate inclusion of four-mode couplings in vibrational coupled-cluster theory.
    Zoccante A; Seidler P; Hansen MB; Christiansen O
    J Chem Phys; 2012 May; 136(20):204118. PubMed ID: 22667551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended vibrational coupled cluster: Stationary states and dynamics.
    Hansen MB; Madsen NK; Christiansen O
    J Chem Phys; 2020 Jul; 153(4):044133. PubMed ID: 32752718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Turney JM; Yamaguchi Y; Schaefer HF; Sherrill CD
    J Chem Phys; 2011 Sep; 135(10):104103. PubMed ID: 21932872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced-cost sparsity-exploiting algorithm for solving coupled-cluster equations.
    Brabec J; Yang C; Epifanovsky E; Krylov AI; Ng E
    J Comput Chem; 2016 May; 37(12):1059-67. PubMed ID: 26804120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting approximate dynamic programming and its convergence.
    Heydari A
    IEEE Trans Cybern; 2014 Dec; 44(12):2733-43. PubMed ID: 24846687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational coupled cluster theory.
    Christiansen O
    J Chem Phys; 2004 Feb; 120(5):2149-59. PubMed ID: 15268353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quadratically convergent algorithm for computing real root of non-linear transcendental equations.
    Thota S; Srivastav VK
    BMC Res Notes; 2018 Dec; 11(1):909. PubMed ID: 30572943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new efficient method for the calculation of interior eigenpairs and its application to vibrational structure problems.
    Petrenko T; Rauhut G
    J Chem Phys; 2017 Mar; 146(12):124101. PubMed ID: 28388102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving Coupled Cluster Equations by the Newton Krylov Method.
    Yang C; Brabec J; Veis L; Williams-Young DB; Kowalski K
    Front Chem; 2020; 8():590184. PubMed ID: 33363108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.