These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28390346)

  • 1. Superheating of monolayer ice in graphene nanocapillaries.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2017 Apr; 146(13):134703. PubMed ID: 28390346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AB-stacked square-like bilayer ice in graphene nanocapillaries.
    Zhu Y; Wang F; Bai J; Zeng XC; Wu H
    Phys Chem Chem Phys; 2016 Aug; 18(32):22039-46. PubMed ID: 27468430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2016 Aug; 145(5):054704. PubMed ID: 27497569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries.
    Zhu Y; Wang F; Bai J; Zeng XC; Wu H
    ACS Nano; 2015 Dec; 9(12):12197-204. PubMed ID: 26575824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions.
    Li S; Schmidt B
    Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and dynamic characteristics in monolayer square ice.
    Zhu Y; Wang F; Wu H
    J Chem Phys; 2017 Jul; 147(4):044706. PubMed ID: 28764369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Puckered Zigzag Monolayer Ice: Does a Confined Flat Four-Coordinated Monolayer Ice Always Have a Corresponding Puckered Phase?
    Wei L; Bai Q; Li X; Liu Z; Li C; Cui Y; Shen L; Zhu C; Fang W
    J Phys Chem Lett; 2023 Oct; 14(39):8890-8895. PubMed ID: 37767947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bulk melting of ice at the limit of superheating.
    Schmeisser M; Iglev H; Laubereau A
    J Phys Chem B; 2007 Sep; 111(38):11271-5. PubMed ID: 17784744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y; Graham LA; Mok YF; Bar M; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5423-8. PubMed ID: 20215465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast superheating and melting of bulk ice.
    Iglev H; Schmeisser M; Simeonidis K; Thaller A; Laubereau A
    Nature; 2006 Jan; 439(7073):183-6. PubMed ID: 16407948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What Controls the Limit of Supercooling and Superheating of Pinned Ice Surfaces?
    Naullage PM; Qiu Y; Molinero V
    J Phys Chem Lett; 2018 Apr; 9(7):1712-1720. PubMed ID: 29544050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superheating and Homogeneous Melting Dynamics of Bulk Ice.
    Fanetti S; Falsini N; Bartolini P; Citroni M; Lapini A; Taschin A; Bini R
    J Phys Chem Lett; 2019 Aug; 10(16):4517-4522. PubMed ID: 31342749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes.
    Raju M; van Duin A; Ihme M
    Sci Rep; 2018 Mar; 8(1):3851. PubMed ID: 29497132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superheating and induced melting at semiconductor interfaces.
    Huang KC; Wang T; Joannopoulos JD
    Phys Rev Lett; 2005 May; 94(17):175702. PubMed ID: 15904312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of two-dimensional tessellation ice on the hydroxylated beta-cristobalite (100) surface.
    Lu ZY; Sun ZY; Li ZS; An LJ
    J Phys Chem B; 2005 Mar; 109(12):5678-83. PubMed ID: 16851613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-solid and solid-solid phase transition of monolayer water: high-density rhombic monolayer ice.
    Kaneko T; Bai J; Yasuoka K; Mitsutake A; Zeng XC
    J Chem Phys; 2014 May; 140(18):184507. PubMed ID: 24832288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice.
    Bai J; Angell CA; Zeng XC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5718-22. PubMed ID: 20304796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.