BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28390382)

  • 1. Cooperative structural transitions in amyloid-like aggregation.
    Steckmann T; Bhandari YR; Chapagain PP; Gerstman BS
    J Chem Phys; 2017 Apr; 146(13):135103. PubMed ID: 28390382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into Stabilizing Forces in Amyloid Fibrils of Differing Sizes from Polarizable Molecular Dynamics Simulations.
    Davidson DS; Brown AM; Lemkul JA
    J Mol Biol; 2018 Oct; 430(20):3819-3834. PubMed ID: 29782833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural, morphological, and functional diversity of amyloid oligomers.
    Breydo L; Uversky VN
    FEBS Lett; 2015 Sep; 589(19 Pt A):2640-8. PubMed ID: 26188543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpreting the aggregation kinetics of amyloid peptides.
    Pellarin R; Caflisch A
    J Mol Biol; 2006 Jul; 360(4):882-92. PubMed ID: 16797587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational studies of protein aggregation: methods and applications.
    Morriss-Andrews A; Shea JE
    Annu Rev Phys Chem; 2015 Apr; 66():643-66. PubMed ID: 25648485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of amyloid-β fibril elongation.
    Gurry T; Stultz CM
    Biochemistry; 2014 Nov; 53(44):6981-91. PubMed ID: 25330398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the conformational transitions during the dimerization of an intrinsically disordered peptide: a case study on the human islet amyloid polypeptide fragment.
    Qiao Q; Qi R; Wei G; Huang X
    Phys Chem Chem Phys; 2016 Nov; 18(43):29892-29904. PubMed ID: 27759128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of fibrillation kinetics of two homologous proteins under identical solution condition.
    Chaudhary AP; Vispute NH; Shukla VK; Ahmad B
    Biochimie; 2017 Jan; 132():75-84. PubMed ID: 27825804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer.
    Berhanu WM; Masunov AE
    J Biomol Struct Dyn; 2015; 33(7):1399-411. PubMed ID: 25093402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic molecular dynamics approach to the structural characterization of amyloid aggregation propensity of β2-microglobulin mutant D76N.
    Chandrasekaran P; Rajasekaran R
    Mol Biosyst; 2016 Mar; 12(3):850-9. PubMed ID: 26757617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling the aggregation and rate of release in order to improve insulin formulation: molecular dynamics study of full-length insulin amyloid oligomer models.
    Berhanu WM; Masunov AE
    J Mol Model; 2012 Mar; 18(3):1129-42. PubMed ID: 21674205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view.
    Katyal N; Deep S
    Phys Chem Chem Phys; 2017 Jul; 19(29):19120-19138. PubMed ID: 28702592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence dependent aggregation of peptides and fibril formation.
    Hung NB; Le DM; Hoang TX
    J Chem Phys; 2017 Sep; 147(10):105102. PubMed ID: 28915764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Initiation, Association, and Formation of Amyloid Fibrils Modeled with the N-Terminal Peptide Fragment, IKYLEFIS, of Myoglobin G-Helix.
    Patel S; Sasidhar YU; Chary KVR
    J Phys Chem B; 2017 Aug; 121(32):7536-7549. PubMed ID: 28707888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of amyloid fibrils: an in silico approach.
    Ye W; Wang W; Jiang C; Yu Q; Chen H
    Acta Biochim Biophys Sin (Shanghai); 2013 Jun; 45(6):503-8. PubMed ID: 23532062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the early stages of human γD-crystallin aggregation process.
    Chang CK; Wang SS; Lo CH; Hsiao HC; Wu JW
    J Biomol Struct Dyn; 2017 Apr; 35(5):1042-1054. PubMed ID: 27025196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and Aggregation Mechanisms in Amyloids.
    Almeida ZL; Brito RMM
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32155822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleation process of a fibril precursor in the C-terminal segment of amyloid-β.
    Baftizadeh F; Pietrucci F; Biarnés X; Laio A
    Phys Rev Lett; 2013 Apr; 110(16):168103. PubMed ID: 23679641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics.
    Berhanu WM; Masunov AE
    Biopolymers; 2012; 98(2):131-44. PubMed ID: 22020870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.