BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28390382)

  • 21. Targeting the Prion-like Aggregation of Mutant p53 to Combat Cancer.
    Silva JL; Cino EA; Soares IN; Ferreira VF; A P de Oliveira G
    Acc Chem Res; 2018 Jan; 51(1):181-190. PubMed ID: 29260852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular insight into amyloid oligomer destabilizing mechanism of flavonoid derivative 2-(4' benzyloxyphenyl)-3-hydroxy-chromen-4-one through docking and molecular dynamics simulations.
    Kumar A; Srivastava S; Tripathi S; Singh SK; Srikrishna S; Sharma A
    J Biomol Struct Dyn; 2016 Jun; 34(6):1252-63. PubMed ID: 26208790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociation of Abeta(16-22) amyloid fibrils probed by molecular dynamics.
    Takeda T; Klimov DK
    J Mol Biol; 2007 May; 368(4):1202-13. PubMed ID: 17382346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new structural model of Alzheimer's Aβ42 fibrils based on electron paramagnetic resonance data and Rosetta modeling.
    Gu L; Tran J; Jiang L; Guo Z
    J Struct Biol; 2016 Apr; 194(1):61-7. PubMed ID: 26827680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Post-Translational Amidation on Islet Amyloid Polypeptide Conformational Ensemble: Implications for Its Aggregation Early Steps.
    Tran L; Ha-Duong T
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27854243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aggregation mechanism investigation of the GIFQINS cross-beta amyloid fibril.
    Chen HF
    Comput Biol Chem; 2009 Feb; 33(1):41-5. PubMed ID: 18755632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of in vivo conditions on amyloid aggregation.
    Owen MC; Gnutt D; Gao M; Wärmländer SKTS; Jarvet J; Gräslund A; Winter R; Ebbinghaus S; Strodel B
    Chem Soc Rev; 2019 Jul; 48(14):3946-3996. PubMed ID: 31192324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphorylation as conformational switch from the native to amyloid state: Trp-cage as a protein aggregation model.
    Kardos J; Kiss B; Micsonai A; Rovó P; Menyhárd DK; Kovács J; Váradi G; Tóth GK; Perczel A
    J Phys Chem B; 2015 Feb; 119(7):2946-55. PubMed ID: 25625571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the aggregation free energy landscape of the amyloid-β protein (1-40).
    Zheng W; Tsai MY; Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11835-11840. PubMed ID: 27698130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural discordance in HIV-1 Vpu from brain isolate alarms amyloid fibril forming behavior- a computational perspective.
    Sneha P; Panda PK; Gharemirshamlu FR; Bamdad K; Balaji S
    J Theor Biol; 2018 Aug; 451():35-45. PubMed ID: 29705491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42).
    Lu Y; Shi XF; Salsbury FR; Derreumaux P
    J Chem Phys; 2017 Apr; 146(14):145101. PubMed ID: 28411614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic analysis of structural transitions during GNNQQNY aggregation.
    Osborne KL; Bachmann M; Strodel B
    Proteins; 2013 Jul; 81(7):1141-55. PubMed ID: 23408546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in the Simulation of Protein Aggregation at the Atomistic Scale.
    Carballo-Pacheco M; Strodel B
    J Phys Chem B; 2016 Mar; 120(12):2991-9. PubMed ID: 26965454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studying the Early Stages of Protein Aggregation Using Replica Exchange Molecular Dynamics Simulations.
    Shea JE; Levine ZA
    Methods Mol Biol; 2016; 1345():225-50. PubMed ID: 26453216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-Terminus Binding Preference for Either Tanshinone or Analogue in Both Inhibition of Amyloid Aggregation and Disaggregation of Preformed Amyloid Fibrils-Toward Introducing a Kind of Novel Anti-Alzheimer Compounds.
    Dong M; Zhao W; Hu D; Ai H; Kang B
    ACS Chem Neurosci; 2017 Jul; 8(7):1577-1588. PubMed ID: 28406293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directing the secondary structure of polypeptides at will: from helices to amyloids and back again?
    Pagel K; Vagt T; Koksch B
    Org Biomol Chem; 2005 Nov; 3(21):3843-50. PubMed ID: 16239998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of the mechanism of beta-amyloid fibril formation by kinetic and thermodynamic analyses.
    Lin MS; Chen LY; Tsai HT; Wang SS; Chang Y; Higuchi A; Chen WY
    Langmuir; 2008 Jun; 24(11):5802-8. PubMed ID: 18452319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structures and thermodynamics of Alzheimer's amyloid-beta Abeta(16-35) monomer and dimer by replica exchange molecular dynamics simulations: implication for full-length Abeta fibrillation.
    Chebaro Y; Mousseau N; Derreumaux P
    J Phys Chem B; 2009 May; 113(21):7668-75. PubMed ID: 19415895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.