These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28390382)

  • 81. Modifying Amyloid Motif Aggregation Through Local Structure.
    Bali S; Joachimiak LA
    Methods Mol Biol; 2022; 2340():343-356. PubMed ID: 35167081
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Recent structural and computational insights into conformational diseases.
    Fernàndez-Busquets X; de Groot NS; Fernandez D; Ventura S
    Curr Med Chem; 2008; 15(13):1336-49. PubMed ID: 18537613
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Computer Simulations Aimed at Exploring Protein Aggregation and Dissociation.
    Nguyen PH; Derreumaux P
    Methods Mol Biol; 2022; 2340():175-196. PubMed ID: 35167075
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Structural transitions and oligomerization along polyalanine fibril formation pathways from computer simulations.
    Phelps EM; Hall CK
    Proteins; 2012 Jun; 80(6):1582-97. PubMed ID: 22411226
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Amyloid Aggregation under the Lens of Liquid-Liquid Phase Separation.
    Xing Y; Nandakumar A; Kakinen A; Sun Y; Davis TP; Ke PC; Ding F
    J Phys Chem Lett; 2021 Jan; 12(1):368-378. PubMed ID: 33356290
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Multi-eGO: An in silico lens to look into protein aggregation kinetics at atomic resolution.
    Scalone E; Broggini L; Visentin C; Erba D; Bačić Toplek F; Peqini K; Pellegrino S; Ricagno S; Paissoni C; Camilloni C
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2203181119. PubMed ID: 35737839
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Electrostatic Polarization Effect on Cooperative Aggregation of Full Length Human Islet Amyloid.
    Li Y; Wang X; Ren L; Cao X; Ji C; Xia F; Zhang JZH
    J Chem Inf Model; 2018 Aug; 58(8):1587-1595. PubMed ID: 30067339
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape.
    Adamcik J; Mezzenga R
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8370-8382. PubMed ID: 29446868
    [TBL] [Abstract][Full Text] [Related]  

  • 89. The Role of Structural Polymorphism in Driving the Mechanical Performance of the Alzheimer's Beta Amyloid Fibrils.
    Grasso G; Rebella M; Morbiducci U; Tuszynski JA; Danani A; Deriu MA
    Front Bioeng Biotechnol; 2019; 7():83. PubMed ID: 31106199
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Co-Aggregation of S100A9 with DOPA and Cyclen-Based Compounds Manifested in Amyloid Fibril Thickening without Altering Rates of Self-Assembly.
    Arabuli L; Iashchishyn IA; Romanova NV; Musteikyte G; Smirnovas V; Chaudhary H; Svedružić ŽM; Morozova-Roche LA
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445262
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Insulin amyloid structures and their influence on neural cells.
    Bystrenova E; Bednarikova Z; Barbalinardo M; Valle F; Gazova Z; Biscarini F
    Colloids Surf B Biointerfaces; 2018 Jan; 161():177-182. PubMed ID: 29078167
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Amyloid polymorphism: structural basis and neurobiological relevance.
    Tycko R
    Neuron; 2015 May; 86(3):632-45. PubMed ID: 25950632
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Kinetics theories to understand the mechanism of aggregation of a protein and to design strategies for its inhibition.
    Sharma S; Modi P; Sharma G; Deep S
    Biophys Chem; 2021 Nov; 278():106665. PubMed ID: 34419715
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Heparin acts as a structural component of β-endorphin amyloid fibrils rather than a simple aggregation promoter.
    Nespovitaya N; Mahou P; Laine RF; Schierle GSK; Kaminski CF
    Chem Commun (Camb); 2017 Jan; 53(7):1273-1276. PubMed ID: 28067354
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Thermophoretic trap for single amyloid fibril and protein aggregation studies.
    Fränzl M; Thalheim T; Adler J; Huster D; Posseckardt J; Mertig M; Cichos F
    Nat Methods; 2019 Jul; 16(7):611-614. PubMed ID: 31235884
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Phosphorylation as a tool to modulate aggregation propensity and to predict fibril architecture.
    Valette NM; Radford SE; Harris SA; Warriner SL
    Chembiochem; 2012 Jan; 13(2):271-81. PubMed ID: 22174034
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Role of Water Molecules and Helix Structure Stabilization in the Laser-Induced Disruption of Amyloid Fibrils Observed by Nonequilibrium Molecular Dynamics Simulations.
    Okumura H; Itoh SG; Nakamura K; Kawasaki T
    J Phys Chem B; 2021 May; 125(19):4964-4976. PubMed ID: 33961416
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Oxidation enhances human serum albumin thermal stability and changes the routes of amyloid fibril formation.
    Sancataldo G; Vetri V; Foderà V; Di Cara G; Militello V; Leone M
    PLoS One; 2014; 9(1):e84552. PubMed ID: 24416244
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Protein Aggregation in a Nutshell: The Splendid Molecular Architecture of the Dreaded Amyloid Fibrils.
    Horváth D; Menyhárd DK; Perczel A
    Curr Protein Pept Sci; 2019; 20(11):1077-1088. PubMed ID: 31553291
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The role of water in amyloid aggregation kinetics.
    Stephens AD; Kaminski Schierle GS
    Curr Opin Struct Biol; 2019 Oct; 58():115-123. PubMed ID: 31299481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.