These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28390735)

  • 1. Laboratory based X-ray photoemission core-level spectromicroscopy of resistive oxide memories.
    Gottlob DM; Martinez E; Mathieu C; Lubin C; Chevalier N; Mendes MK; Charpin C; Jalaguier E; Renault O; Barrett N
    Ultramicroscopy; 2017 Dec; 183():94-98. PubMed ID: 28390735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ALBA spectroscopic LEEM-PEEM experimental station: layout and performance.
    Aballe L; Foerster M; Pellegrin E; Nicolas J; Ferrer S
    J Synchrotron Radiat; 2015 May; 22(3):745-52. PubMed ID: 25931092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ control of oxygen vacancies in TiO₂ by atomic layer deposition for resistive switching devices.
    Park SJ; Lee JP; Jang JS; Rhu H; Yu H; You BY; Kim CS; Kim KJ; Cho YJ; Baik S; Lee W
    Nanotechnology; 2013 Jul; 24(29):295202. PubMed ID: 23799660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistive switching and electrical control of ferromagnetism in a Ag/HfO₂/Nb:SrTiO₃/Ag resistive random access memory (RRAM) device at room temperature.
    Ren S; Zhu G; Xie J; Bu J; Qin H; Hu J
    J Phys Condens Matter; 2016 Feb; 28(5):056001. PubMed ID: 26761365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic Scale Modulation of Self-Rectifying Resistive Switching by Interfacial Defects.
    Wu X; Yu K; Cha D; Bosman M; Raghavan N; Zhang X; Li K; Liu Q; Sun L; Pey K
    Adv Sci (Weinh); 2018 Jun; 5(6):1800096. PubMed ID: 29938188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New directions in the analysis of buried interfaces for device technology by hard X-ray photoemission.
    Renault O; Deleuze PM; Courtin J; Bure TR; Gauthier N; Nolot E; Robert-Goumet C; Pauly N; Martinez E; Artyushkova K
    Faraday Discuss; 2022 Aug; 236(0):288-310. PubMed ID: 35543197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Metal-Oxide Interactions in Resistive Switching Memories.
    Cho DY; Luebben M; Wiefels S; Lee KS; Valov I
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19287-19295. PubMed ID: 28508634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of X-ray photoemission electron microscopic image for Ag/Si nano-structure.
    Mei HP; Zhang ZM; Ding ZJ
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7824-8. PubMed ID: 21138042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Customized binary and multi-level HfO
    He W; Sun H; Zhou Y; Lu K; Xue K; Miao X
    Sci Rep; 2017 Aug; 7(1):10070. PubMed ID: 28855562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models.
    Nakamura H; Asai Y
    Phys Chem Chem Phys; 2016 Apr; 18(13):8820-6. PubMed ID: 26975565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of oxygen exchange reaction at the ohmic interface in Ta
    Kim W; Menzel S; Wouters DJ; Guo Y; Robertson J; Roesgen B; Waser R; Rana V
    Nanoscale; 2016 Oct; 8(41):17774-17781. PubMed ID: 27523172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectromicroscopy Studies of Silicon Nanowires Array Covered by Tin Oxide Layers.
    Turishchev S; Schleusener A; Chuvenkova O; Parinova E; Liu P; Manyakin M; Kurganskii S; Sivakov V
    Small; 2023 Mar; 19(10):e2206322. PubMed ID: 36650978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and structural properties of conducting nanofilaments in TiN/HfO2-based resistive switching structures.
    Calka P; Martinez E; Delaye V; Lafond D; Audoit G; Mariolle D; Chevalier N; Grampeix H; Cagli C; Jousseaume V; Guedj C
    Nanotechnology; 2013 Mar; 24(8):085706. PubMed ID: 23386039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistive switching in high-density nanodevices fabricated by block copolymer self-assembly.
    Frascaroli J; Brivio S; Ferrarese Lupi F; Seguini G; Boarino L; Perego M; Spiga S
    ACS Nano; 2015 Mar; 9(3):2518-29. PubMed ID: 25743480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant photoemission at the L3 absorption edge of Mn and Ti and the electronic structure of 1T-Mn0.2TiSe2.
    Yablonskikh MV; Shkvarin AS; Yarmoshenko YM; Skorikov NA; Titov AN
    J Phys Condens Matter; 2012 Feb; 24(4):045504. PubMed ID: 22217478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen Vacancies Control Transition of Resistive Switching Mode in Single-Crystal TiO
    Ge J; Chaker M
    ACS Appl Mater Interfaces; 2017 May; 9(19):16327-16334. PubMed ID: 28452213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories.
    Xu ZT; Jin KJ; Gu L; Jin YL; Ge C; Wang C; Guo HZ; Lu HB; Zhao RQ; Yang GZ
    Small; 2012 Apr; 8(8):1279-84. PubMed ID: 22351297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The current limit and self-rectification functionalities in the TiO
    Yoon JH; Kwon DE; Kim Y; Kwon YJ; Yoon KJ; Park TH; Shao XL; Hwang CS
    Nanoscale; 2017 Aug; 9(33):11920-11928. PubMed ID: 28786468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nondestructive approach to study resistive switching mechanism in metal oxide based on defect photoluminescence mapping.
    Wang X; Gao B; Wu H; Li X; Hong D; Chen Y; Qian H
    Nanoscale; 2017 Sep; 9(36):13449-13456. PubMed ID: 28657082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory.
    Nho HW; Kim JY; Wang J; Shin HJ; Choi SY; Yoon TH
    J Synchrotron Radiat; 2014 Jan; 21(Pt 1):170-6. PubMed ID: 24365933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.