BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1009 related articles for article (PubMed ID: 28390838)

  • 1. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional spectral precision distance microscopy of chromatin nanostructures after triple-colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome.
    Esa A; Edelmann P; Kreth G; Trakhtenbrot L; Amariglio N; Rechavi G; Hausmann M; Cremer C
    J Microsc; 2000 Aug; 199(Pt 2):96-105. PubMed ID: 10947902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations.
    Szczurek A; Klewes L; Xing J; Gourram A; Birk U; Knecht H; Dobrucki JW; Mai S; Cremer C
    Nucleic Acids Res; 2017 May; 45(8):e56. PubMed ID: 28082388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-colour direct STORM with red emitting carbocyanines.
    Lampe A; Haucke V; Sigrist SJ; Heilemann M; Schmoranzer J
    Biol Cell; 2012 Apr; 104(4):229-37. PubMed ID: 22187967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.
    Schmid VJ; Cremer M; Cremer T
    Methods; 2017 Jul; 123():33-46. PubMed ID: 28323041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superresolution imaging of biological nanostructures by spectral precision distance microscopy.
    Cremer C; Kaufmann R; Gunkel M; Pres S; Weiland Y; Müller P; Ruckelshausen T; Lemmer P; Geiger F; Degenhard S; Wege C; Lemmermann NA; Holtappels R; Strickfaden H; Hausmann M
    Biotechnol J; 2011 Sep; 6(9):1037-51. PubMed ID: 21910256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application perspectives of localization microscopy in virology.
    Cremer C; Kaufmann R; Gunkel M; Polanski F; Müller P; Dierkes R; Degenhard S; Wege C; Hausmann M; Birk U
    Histochem Cell Biol; 2014 Jul; 142(1):43-59. PubMed ID: 24614971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization microscopy of DNA in situ using Vybrant(®) DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution.
    Żurek-Biesiada D; Szczurek AT; Prakash K; Mohana GK; Lee HK; Roignant JY; Birk UJ; Dobrucki JW; Cremer C
    Exp Cell Res; 2016 May; 343(2):97-106. PubMed ID: 26341267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual color localization microscopy of cellular nanostructures.
    Gunkel M; Erdel F; Rippe K; Lemmer P; Kaufmann R; Hörmann C; Amberger R; Cremer C
    Biotechnol J; 2009 Jun; 4(6):927-38. PubMed ID: 19548231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ChromoTrace: Computational reconstruction of 3D chromosome configurations for super-resolution microscopy.
    Barton C; Morganella S; Ødegård-Fougner Ø; Alexander S; Ries J; Fitzgerald T; Ellenberg J; Birney E
    PLoS Comput Biol; 2018 Mar; 14(3):e1006002. PubMed ID: 29522506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA and chromatin imaging with super-resolution fluorescence microscopy based on single-molecule localization.
    Flors C
    Biopolymers; 2011 May; 95(5):290-7. PubMed ID: 21184489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PML nuclear bodies and chromatin dynamics: catch me if you can!
    Corpet A; Kleijwegt C; Roubille S; Juillard F; Jacquet K; Texier P; Lomonte P
    Nucleic Acids Res; 2020 Dec; 48(21):11890-11912. PubMed ID: 33068409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding DNA organization, damage, and repair with super-resolution fluorescence microscopy.
    Miriklis EL; Rozario AM; Rothenberg E; Bell TDM; Whelan DR
    Methods Appl Fluoresc; 2021 May; 9(3):. PubMed ID: 33765677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes.
    Szczurek AT; Prakash K; Lee HK; Zurek-Biesiada DJ; Best G; Hagmann M; Dobrucki JW; Cremer C; Birk U
    Nucleus; 2014; 5(4):331-40. PubMed ID: 25482122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Color and 3D Super-Resolution Microscopy of Multi-protein Assemblies.
    Hoess P; Mund M; Reitberger M; Ries J
    Methods Mol Biol; 2018; 1764():237-251. PubMed ID: 29605918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.
    Yan R; Moon S; Kenny SJ; Xu K
    Acc Chem Res; 2018 Mar; 51(3):697-705. PubMed ID: 29443498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecule Counts in Localization Microscopy with Organic Fluorophores.
    Karathanasis C; Fricke F; Hummer G; Heilemann M
    Chemphyschem; 2017 Apr; 18(8):942-948. PubMed ID: 28196307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range.
    Lemmer P; Gunkel M; Weiland Y; Müller P; Baddeley D; Kaufmann R; Urich A; Eipel H; Amberger R; Hausmann M; Cremer C
    J Microsc; 2009 Aug; 235(2):163-71. PubMed ID: 19659910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel organic dyes for multicolor localization-based super-resolution microscopy.
    Lehmann M; Lichtner G; Klenz H; Schmoranzer J
    J Biophotonics; 2016 Jan; 9(1-2):161-70. PubMed ID: 25973835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH).
    Solovei I; Cavallo A; Schermelleh L; Jaunin F; Scasselati C; Cmarko D; Cremer C; Fakan S; Cremer T
    Exp Cell Res; 2002 May; 276(1):10-23. PubMed ID: 11978004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.