These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 28390859)

  • 21. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis.
    Gottschalk F; Sonderer T; Scholz RW; Nowack B
    Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of aquatic toxicity benchmarks for oil products using species sensitivity distributions.
    Barron MG; Hemmer MJ; Jackson CR
    Integr Environ Assess Manag; 2013 Oct; 9(4):610-5. PubMed ID: 23554001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface immobilization of engineered nanomaterials for in situ study of their environmental transformations and fate.
    Sekine R; Khaksar M; Brunetti G; Donner E; Scheckel KG; Lombi E; Vasilev K
    Environ Sci Technol; 2013 Aug; 47(16):9308-16. PubMed ID: 23879534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of engineered nanomaterials: current challenges, insights and future directions.
    Lai RWS; Yeung KWY; Yung MMN; Djurišić AB; Giesy JP; Leung KMY
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3060-3077. PubMed ID: 28639026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological and biochemical response of plants to engineered NMs: Implications on future design.
    de la Rosa G; García-Castañeda C; Vázquez-Núñez E; Alonso-Castro ÁJ; Basurto-Islas G; Mendoza Á; Cruz-Jiménez G; Molina C
    Plant Physiol Biochem; 2017 Jan; 110():226-235. PubMed ID: 27328789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters.
    Suhendra E; Chang CH; Hou WC; Hsieh YC
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The need for novel approaches in ecotoxicity of engineered nanomaterials.
    Kumar A; Dhawan A; Shanker R
    J Biomed Nanotechnol; 2011 Feb; 7(1):79-80. PubMed ID: 21485813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multimedia environmental distribution of engineered nanomaterials.
    Liu HH; Cohen Y
    Environ Sci Technol; 2014 Mar; 48(6):3281-92. PubMed ID: 24548277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental toxicity of engineered nanomaterials in rodents.
    Ema M; Gamo M; Honda K
    Toxicol Appl Pharmacol; 2016 May; 299():47-52. PubMed ID: 26721308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aquatic Mesocosm Strategies for the Environmental Fate and Risk Assessment of Engineered Nanomaterials.
    Carboni A; Slomberg DL; Nassar M; Santaella C; Masion A; Rose J; Auffan M
    Environ Sci Technol; 2021 Dec; 55(24):16270-16282. PubMed ID: 34854667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the Risk of Engineered Nanomaterials in the Environment: Development and Application of the nanoFate Model.
    Garner KL; Suh S; Keller AA
    Environ Sci Technol; 2017 May; 51(10):5541-5551. PubMed ID: 28443660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of metallic and metal oxide nanomaterial environmental emissions.
    Tolaymat T; El Badawy A; Genaidy A; Abdelraheem W; Swqueria R
    J Clean Prod; 2017 Feb; 143():401-412. PubMed ID: 32489231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Initial Speciation of Copper- and Silver-Based Nanoparticles on Their Long-Term Fate and Phytoavailability in Freshwater Wetland Mesocosms.
    Stegemeier JP; Avellan A; Lowry GV
    Environ Sci Technol; 2017 Nov; 51(21):12114-12122. PubMed ID: 29017014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials.
    Chen G; Vijver MG; Xiao Y; Peijnenburg WJGM
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28858269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental risk assessment of engineered nano-SiO
    Wang Y; Nowack B
    Environ Toxicol Chem; 2018 May; 37(5):1387-1395. PubMed ID: 29315795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.
    Holden PA; Nisbet RM; Lenihan HS; Miller RJ; Cherr GN; Schimel JP; Gardea-Torresdey JL
    Acc Chem Res; 2013 Mar; 46(3):813-22. PubMed ID: 23039211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metallic Engineered Nanomaterials and Ocular Toxicity: A Current Perspective.
    Cosert KM; Kim S; Jalilian I; Chang M; Gates BL; Pinkerton KE; Van Winkle LS; Raghunathan VK; Leonard BC; Thomasy SM
    Pharmaceutics; 2022 May; 14(5):. PubMed ID: 35631569
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrated approach for the in vitro dosimetry of engineered nanomaterials.
    Cohen JM; Teeguarden JG; Demokritou P
    Part Fibre Toxicol; 2014 May; 11():20. PubMed ID: 24885440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxicity assessment of metal oxide nanomaterials using
    Areecheewakul S; Adamcakova-Dodd A; Givens BE; Steines BR; Wang Y; Meyerholz DK; Parizek NJ; Altmaier R; Haque E; O'Shaughnessy PT; Salem AK; Thorne PS
    NanoImpact; 2020 Apr; 18():. PubMed ID: 32968700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.