BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28391203)

  • 1. A Spatial-Temporal Method to Detect Global Influenza Epidemics Using Heterogeneous Data Collected from the Internet.
    Zhou X; Yang F; Feng Y; Li Q; Tang F; Hu S; Lin Z; Zhang L
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):802-812. PubMed ID: 28391203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continental synchronicity of human influenza virus epidemics despite climatic variation.
    Geoghegan JL; Saavedra AF; Duchêne S; Sullivan S; Barr I; Holmes EC
    PLoS Pathog; 2018 Jan; 14(1):e1006780. PubMed ID: 29324895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data.
    Zhang Y; Yakob L; Bonsall MB; Hu W
    Sci Rep; 2019 Mar; 9(1):3262. PubMed ID: 30824756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Modeling of Epidemics with an Empirical Bayes Framework.
    Brooks LC; Farrow DC; Hyun S; Tibshirani RJ; Rosenfeld R
    PLoS Comput Biol; 2015 Aug; 11(8):e1004382. PubMed ID: 26317693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks.
    Conesa D; Martínez-Beneito MA; Amorós R; López-Quílez A
    Stat Methods Med Res; 2015 Apr; 24(2):206-23. PubMed ID: 21873301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Google Trends and ambient temperature to predict seasonal influenza outbreaks.
    Zhang Y; Bambrick H; Mengersen K; Tong S; Hu W
    Environ Int; 2018 Aug; 117():284-291. PubMed ID: 29778013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use Internet search data to accurately track state level influenza epidemics.
    Yang S; Ning S; Kou SC
    Sci Rep; 2021 Feb; 11(1):4023. PubMed ID: 33597556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate estimation of influenza epidemics using Google search data via ARGO.
    Yang S; Santillana M; Kou SC
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14473-8. PubMed ID: 26553980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of Spatiotemporal Data for Epidemic Alert Systems: Monitoring Influenza-Like Illness in France.
    Polyakov P; Souty C; Böelle PY; Breban R
    Am J Epidemiol; 2019 Apr; 188(4):724-733. PubMed ID: 30576414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nowcasting influenza epidemics using non-homogeneous hidden Markov models.
    Nunes B; Natário I; Lucília Carvalho M
    Stat Med; 2013 Jul; 32(15):2643-60. PubMed ID: 23124850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid mapping of the spatial and temporal intensity of influenza.
    Muscatello DJ; Leong RNF; Turner RM; Newall AT
    Eur J Clin Microbiol Infect Dis; 2019 Jul; 38(7):1307-1312. PubMed ID: 31069558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring epidemic alert levels by analyzing Internet search volume.
    Zhou X; Li Q; Zhu Z; Zhao H; Tang H; Feng Y
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):446-52. PubMed ID: 23192470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting regional influenza epidemics with uncertainty estimation using commuting data in Japan.
    Murayama T; Shimizu N; Fujita S; Wakamiya S; Aramaki E
    PLoS One; 2021; 16(4):e0250417. PubMed ID: 33886669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging hospital big data to monitor flu epidemics.
    Bouzillé G; Poirier C; Campillo-Gimenez B; Aubert ML; Chabot M; Chazard E; Lavenu A; Cuggia M
    Comput Methods Programs Biomed; 2018 Feb; 154():153-160. PubMed ID: 29249339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial distribution and risk factors of influenza in Jiangsu province, China, based on geographical information system.
    Zhang JC; Liu WD; Liang Q; Hu JL; Norris J; Wu Y; Bao CJ; Tang FY; Huang P; Zhao Y; Yu RB; Zhou MH; Shen HB; Chen F; Peng ZH
    Geospat Health; 2014 May; 8(2):429-35. PubMed ID: 24893019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring seasonal influenza epidemics by using internet search data with an ensemble penalized regression model.
    Guo P; Zhang J; Wang L; Yang S; Luo G; Deng C; Wen Y; Zhang Q
    Sci Rep; 2017 Apr; 7():46469. PubMed ID: 28422149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weekly ILI patient ratio change prediction using news articles with support vector machine.
    Kim J; Ahn I
    BMC Bioinformatics; 2019 May; 20(1):259. PubMed ID: 31109286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Fluctuating Rates of Hospitalizations in Relation to Influenza Epidemics and Meteorological Factors.
    Spiga R; Batton-Hubert M; Sarazin M
    PLoS One; 2016; 11(6):e0157492. PubMed ID: 27310145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian Markov switching models for the early detection of influenza epidemics.
    Martínez-Beneito MA; Conesa D; López-Quílez A; López-Maside A
    Stat Med; 2008 Sep; 27(22):4455-68. PubMed ID: 18618414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential detection of influenza epidemics by the Kolmogorov-Smirnov test.
    Closas P; Coma E; Méndez L
    BMC Med Inform Decis Mak; 2012 Oct; 12():112. PubMed ID: 23031321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.