BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28391203)

  • 21. Using clinicians' search query data to monitor influenza epidemics.
    Santillana M; Nsoesie EO; Mekaru SR; Scales D; Brownstein JS
    Clin Infect Dis; 2014 Nov; 59(10):1446-50. PubMed ID: 25115873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using networks to combine "big data" and traditional surveillance to improve influenza predictions.
    Davidson MW; Haim DA; Radin JM
    Sci Rep; 2015 Jan; 5():8154. PubMed ID: 25634021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of French influenza outbreaks periods between 1985 and 2011 through a web-based Delphi method.
    Debin M; Souty C; Turbelin C; Blanchon T; Boëlle PY; Hanslik T; Hejblum G; Le Strat Y; Quintus F; ; Falchi A
    BMC Med Inform Decis Mak; 2013 Dec; 13():138. PubMed ID: 24364926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FluHMM: A simple and flexible Bayesian algorithm for sentinel influenza surveillance and outbreak detection.
    Lytras T; Gkolfinopoulou K; Bonovas S; Nunes B
    Stat Methods Med Res; 2019 Jun; 28(6):1826-1840. PubMed ID: 29869565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal diffusion of influenza A (H1N1): Starting point and risk factors.
    da Costa ACC; Codeço CT; Krainski ET; Gomes MFDC; Nobre AA
    PLoS One; 2018; 13(9):e0202832. PubMed ID: 30180215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using internet-based query and climate data to predict climate-sensitive infectious disease risks: a systematic review of epidemiological evidence.
    Zhang Y; Bambrick H; Mengersen K; Tong S; Hu W
    Int J Biometeorol; 2021 Dec; 65(12):2203-2214. PubMed ID: 34075475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. INSaFLU: an automated open web-based bioinformatics suite "from-reads" for influenza whole-genome-sequencing-based surveillance.
    Borges V; Pinheiro M; Pechirra P; Guiomar R; Gomes JP
    Genome Med; 2018 Jun; 10(1):46. PubMed ID: 29954441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling the epidemic waves of AH1N1/09 influenza around the world.
    González-Parra G; Arenas AJ; Aranda DF; Segovia L
    Spat Spatiotemporal Epidemiol; 2011 Dec; 2(4):219-26. PubMed ID: 22748221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Bayesian spatio-temporal approach for real-time detection of disease outbreaks: a case study.
    Zou J; Karr AF; Datta G; Lynch J; Grannis S
    BMC Med Inform Decis Mak; 2014 Dec; 14():108. PubMed ID: 25476843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting influenza epidemics using search engine query data.
    Ginsberg J; Mohebbi MH; Patel RS; Brammer L; Smolinski MS; Brilliant L
    Nature; 2009 Feb; 457(7232):1012-4. PubMed ID: 19020500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiscale influenza forecasting.
    Osthus D; Moran KR
    Nat Commun; 2021 May; 12(1):2991. PubMed ID: 34016992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Google Flu Trends data in forecasting influenza-like-illness related ED visits in Omaha, Nebraska.
    Araz OM; Bentley D; Muelleman RL
    Am J Emerg Med; 2014 Sep; 32(9):1016-23. PubMed ID: 25037278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimating Influenza Outbreaks Using Both Search Engine Query Data and Social Media Data in South Korea.
    Woo H; Cho Y; Shim E; Lee JK; Lee CG; Kim SH
    J Med Internet Res; 2016 Jul; 18(7):e177. PubMed ID: 27377323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing Social media and Google to detect and predict severe epidemics.
    Samaras L; García-Barriocanal E; Sicilia MA
    Sci Rep; 2020 Mar; 10(1):4747. PubMed ID: 32179780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capturing the time-varying drivers of an epidemic using stochastic dynamical systems.
    Dureau J; Kalogeropoulos K; Baguelin M
    Biostatistics; 2013 Jul; 14(3):541-55. PubMed ID: 23292757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influenza epidemics in Iceland over 9 decades: changes in timing and synchrony with the United States and Europe.
    Weinberger DM; Krause TG; Mølbak K; Cliff A; Briem H; Viboud C; Gottfredsson M
    Am J Epidemiol; 2012 Oct; 176(7):649-55. PubMed ID: 22962250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inferring epidemic network topology from surveillance data.
    Wan X; Liu J; Cheung WK; Tong T
    PLoS One; 2014; 9(6):e100661. PubMed ID: 24979215
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chinese Public Attention to the Outbreak of Ebola in West Africa: Evidence from the Online Big Data Platform.
    Liu K; Li L; Jiang T; Chen B; Jiang Z; Wang Z; Chen Y; Jiang J; Gu H
    Int J Environ Res Public Health; 2016 Aug; 13(8):. PubMed ID: 27527196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of ESSENCE performance for influenza-like illness surveillance after an influenza outbreak--U.S. Air Force Academy, Colorado, 2009.
    Centers for Disease Control and Prevention (CDC)
    MMWR Morb Mortal Wkly Rep; 2011 Apr; 60(13):406-9. PubMed ID: 21471947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human mobility and the spatial transmission of influenza in the United States.
    Charu V; Zeger S; Gog J; Bjørnstad ON; Kissler S; Simonsen L; Grenfell BT; Viboud C
    PLoS Comput Biol; 2017 Feb; 13(2):e1005382. PubMed ID: 28187123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.