BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

630 related articles for article (PubMed ID: 28391207)

  • 1. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.
    Maisto M; Pacchierotti C; Chinello F; Salvietti G; De Luca A; Prattichizzo D
    IEEE Trans Haptics; 2017; 10(4):511-522. PubMed ID: 28391207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can Wearable Haptic Devices Foster the Embodiment of Virtual Limbs?
    Frohner J; Salvietti G; Beckerle P; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(3):339-349. PubMed ID: 30582554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Overview of Wearable Haptic Technologies and Their Performance in Virtual Object Exploration.
    van Wegen M; Herder JL; Adelsberger R; Pastore-Wapp M; van Wegen EEH; Bohlhalter S; Nef T; Krack P; Vanbellingen T
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Skin Deformation as Force Substitution: Wearable Device Design and Performance During Haptic Exploration of Virtual Environments.
    Schorr SB; Okamura AM
    IEEE Trans Haptics; 2017; 10(3):418-430. PubMed ID: 28237933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.
    Leonardis D; Solazzi M; Bortone I; Frisoli A
    IEEE Trans Haptics; 2017; 10(3):305-316. PubMed ID: 28113306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics.
    Salazar SV; Pacchierotti C; de Tinguy X; Maciel A; Marchal M
    IEEE Trans Haptics; 2020; 13(1):167-174. PubMed ID: 31976907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Three Revolute-Revolute-Spherical Wearable Fingertip Cutaneous Device for Stiffness Rendering.
    Chinello F; Pacchierotti C; Malvezzi M; Prattichizzo D
    IEEE Trans Haptics; 2018; 11(1):39-50. PubMed ID: 28945602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
    Gaffary Y; Le Gouis B; Marchal M; Argelaguet F; Arnaldi B; Lecuyer A
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2372-2377. PubMed ID: 28809699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Positioning Wearable Haptic Interfaces on Limbs Influences Virtual Embodiment.
    Dwivedi A; Yu S; Hao C; Salvietti G; Prattichizzo D; Beckerle P
    IEEE Trans Haptics; 2024; 17(2):292-301. PubMed ID: 38157458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization-Based Wearable Tactile Rendering.
    Perez AG; Lobo D; Chinello F; Cirio G; Malvezzi M; Martin JS; Prattichizzo D; Otaduy MA
    IEEE Trans Haptics; 2017; 10(2):254-264. PubMed ID: 27775909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FW-Touch: A Finger Wearable Haptic Interface With an MR Foam Actuator for Displaying Surface Material Properties on a Touch Screen.
    Chen D; Song A; Tian L; Fu L; Zeng H
    IEEE Trans Haptics; 2019; 12(3):281-294. PubMed ID: 31180900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft Pneumatic Haptic Wearable to Create the Illusion of Human Touch.
    Talhan A; Yoo Y; Cooperstock JR
    IEEE Trans Haptics; 2024; 17(2):177-190. PubMed ID: 37581970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards wearability in fingertip haptics: a 3-DoF wearable device for cutaneous force feedback.
    Prattichizzo D; Chinello F; Pacchierotti C; Malvezzi M
    IEEE Trans Haptics; 2013; 6(4):506-16. PubMed ID: 24808402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the Effectiveness of a Wearable Haptic Interface With Cutaneous and Vibrotactile Feedback for VR-Based Teleoperation.
    Trinitatova D; Tsetserukou D
    IEEE Trans Haptics; 2023; 16(4):463-469. PubMed ID: 37037227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. W-FYD: A Wearable Fabric-Based Display for Haptic Multi-Cue Delivery and Tactile Augmented Reality.
    Fani S; Ciotti S; Battaglia E; Moscatelli A; Bianchi M
    IEEE Trans Haptics; 2018; 11(2):304-316. PubMed ID: 28796622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haptigami: A Fingertip Haptic Interface With Vibrotactile and 3-DoF Cutaneous Force Feedback.
    Giraud FH; Joshi S; Paik J
    IEEE Trans Haptics; 2022; 15(1):131-141. PubMed ID: 34379595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ascending and Descending in Virtual Reality: Simple and Safe System Using Passive Haptics.
    Nagao R; Matsumoto K; Narumi T; Tanikawa T; Hirose M
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1584-1593. PubMed ID: 29543176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Multi-Finger Interface with MR Actuators for Haptic Applications.
    Qin H; Song A; Gao Z; Liu Y; Jiang G
    IEEE Trans Haptics; 2018; 11(1):5-14. PubMed ID: 28574369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Getting Your Hands Dirty Outside the Lab: A Practical Primer for Conducting Wearable Vibrotactile Haptics Research.
    Blum JR; Fortin PE; Al Taha F; Alirezaee P; Demers M; Weill-Duflos A; Cooperstock JR
    IEEE Trans Haptics; 2019; 12(3):232-246. PubMed ID: 31352355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.