These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 28391474)
1. Cost-effective cellulase production using Parthenium hysterophorus biomass as an unconventional lignocellulosic substrate. Saini A; Aggarwal NK; Yadav A 3 Biotech; 2017 May; 7(1):12. PubMed ID: 28391474 [TBL] [Abstract][Full Text] [Related]
2. Medium supplementation and thorough optimization to induce carboxymethyl cellulase production by Taherzadeh-Ghahfarokhi M; Panahi R; Mokhtarani B Prep Biochem Biotechnol; 2022; 52(4):375-382. PubMed ID: 34319847 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
4. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951 [TBL] [Abstract][Full Text] [Related]
5. Cellulase hyper-production by Li C; Lin F; Zhou L; Qin L; Li B; Zhou Z; Jin M; Chen Z Biotechnol Biofuels; 2017; 10():228. PubMed ID: 29034003 [TBL] [Abstract][Full Text] [Related]
6. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies. Santos GB; de Sousa Francisco Filho Á; Rêgo da Silva Rodrigues J; Rodrigues de Souza R J Environ Manage; 2022 Mar; 305():114431. PubMed ID: 34995940 [TBL] [Abstract][Full Text] [Related]
7. Cost-effective production of cellulose hydrolysing enzymes from Trichoderma sp. RCK65 under SSF and its evaluation in saccharification of cellulosic substrates. Chakraborty S; Gupta R; Jain KK; Kuhad RC Bioprocess Biosyst Eng; 2016 Nov; 39(11):1659-70. PubMed ID: 27344316 [TBL] [Abstract][Full Text] [Related]
8. A novel Trichoderma reesei mutant RP698 with enhanced cellulase production. Silva JCR; Salgado JCS; Vici AC; Ward RJ; Polizeli MLTM; Guimarães LHS; Furriel RPM; Jorge JA Braz J Microbiol; 2020 Jun; 51(2):537-545. PubMed ID: 31667801 [TBL] [Abstract][Full Text] [Related]
9. Optimization of pretreatment and fermentation conditions for production of extracellular cellulase complex using sugarcane bagasse. Ashfaque M; Solomon S; Pathak N Bioinformation; 2014; 10(10):606-10. PubMed ID: 25489168 [TBL] [Abstract][Full Text] [Related]
10. Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: statistical optimization of process parameters. Mekala NK; Singhania RR; Sukumaran RK; Pandey A Appl Biochem Biotechnol; 2008 Dec; 151(2-3):122-31. PubMed ID: 18975142 [TBL] [Abstract][Full Text] [Related]
11. Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Mrudula S; Murugammal R Braz J Microbiol; 2011 Jul; 42(3):1119-27. PubMed ID: 24031730 [TBL] [Abstract][Full Text] [Related]
12. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. Ezeilo UR; Lee CT; Huyop F; Zakaria II; Wahab RA J Environ Manage; 2019 Aug; 243():206-217. PubMed ID: 31096173 [TBL] [Abstract][Full Text] [Related]
13. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Singhania RR; Sukumaran RK; Pandey A Appl Biochem Biotechnol; 2007 Jul; 142(1):60-70. PubMed ID: 18025569 [TBL] [Abstract][Full Text] [Related]
14. Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum. Iqtedar M; Nadeem M; Naeem H; Abdullah R; Naz S; Qurat ul Ain Syed ; Kaleem A Nat Prod Res; 2015; 29(11):1012-9. PubMed ID: 25346145 [TBL] [Abstract][Full Text] [Related]
15. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Idris ASO; Pandey A; Rao SS; Sukumaran RK Bioresour Technol; 2017 Oct; 242():265-271. PubMed ID: 28366693 [TBL] [Abstract][Full Text] [Related]
16. Effect of nutritional factors on cellulase enzyme and microbial protein production by Aspergillus terreus and its evaluation. Garg SK; Neelakantan S Biotechnol Bioeng; 1982 Jan; 24(1):109-25. PubMed ID: 18546104 [TBL] [Abstract][Full Text] [Related]
17. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Xin F; Geng A Appl Biochem Biotechnol; 2010 Sep; 162(1):295-306. PubMed ID: 19707729 [TBL] [Abstract][Full Text] [Related]
18. Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and 3-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164. Kumar R; Singh RP Appl Biochem Biotechnol; 2001; 96(1-3):71-82. PubMed ID: 11783902 [TBL] [Abstract][Full Text] [Related]
19. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators. Zhang J; Zhang G; Wang W; Wang W; Wei D Microb Cell Fact; 2018 May; 17(1):75. PubMed ID: 29773074 [TBL] [Abstract][Full Text] [Related]
20. Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Jun H; Bing Y; Keying Z; Xuemei D; Daiwen C Indian J Microbiol; 2009 Jun; 49(2):188-95. PubMed ID: 23100767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]