BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 28391528)

  • 1. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications.
    Nianiou-Obeidat I; Madesis P; Kissoudis C; Voulgari G; Chronopoulou E; Tsaftaris A; Labrou NE
    Plant Cell Rep; 2017 Jun; 36(6):791-805. PubMed ID: 28391528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in protein engineering and biotechnological applications of glutathione transferases.
    Perperopoulou F; Pouliou F; Labrou NE
    Crit Rev Biotechnol; 2018 Jun; 38(4):511-528. PubMed ID: 28936894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).
    Moons A
    Vitam Horm; 2005; 72():155-202. PubMed ID: 16492471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Analysis of Two Stress-Inducible tau Class Glutathione Transferases from Glycine max Revealed Significant Catalytic and Structural Diversification.
    Pouliou F; Perperopoulou F; Labrou NE
    Protein Pept Lett; 2017; 24(10):922-935. PubMed ID: 29076409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione transferases: emerging multidisciplinary tools in red and green biotechnology.
    Chronopoulou EG; Labrou NE
    Recent Pat Biotechnol; 2009; 3(3):211-23. PubMed ID: 19747150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles for glutathione transferases in plant secondary metabolism.
    Dixon DP; Skipsey M; Edwards R
    Phytochemistry; 2010 Mar; 71(4):338-50. PubMed ID: 20079507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of a biotic-stress-inducible glutathione transferase from Phaseolus vulgaris.
    Chronopoulou E; Madesis P; Tsaftaris A; Labrou NE
    Appl Biochem Biotechnol; 2014 Jan; 172(2):595-609. PubMed ID: 24104686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione S-transferase: a versatile protein family.
    Vaish S; Gupta D; Mehrotra R; Mehrotra S; Basantani MK
    3 Biotech; 2020 Jul; 10(7):321. PubMed ID: 32656054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione S-Transferase Enzymes in Plant-Pathogen Interactions.
    Gullner G; Komives T; Király L; Schröder P
    Front Plant Sci; 2018; 9():1836. PubMed ID: 30622544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and functional analysis of a recombinant tau class glutathione transferase GmGSTU2-2 from Glycine max.
    Skopelitou K; Muleta AW; Papageorgiou AC; Chronopoulou EG; Pavli O; Flemetakis E; Skaracis GN; Labrou NE
    Int J Biol Macromol; 2017 Jan; 94(Pt B):802-812. PubMed ID: 27103493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the diversity of the Arabidopsis glutathione S-transferase gene family.
    Wagner U; Edwards R; Dixon DP; Mauch F
    Plant Mol Biol; 2002 Jul; 49(5):515-32. PubMed ID: 12090627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases.
    Sylvestre-Gonon E; Law SR; Schwartz M; Robe K; Keech O; Didierjean C; Dubos C; Rouhier N; Hecker A
    Front Plant Sci; 2019; 10():608. PubMed ID: 31191562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple roles for plant glutathione transferases in xenobiotic detoxification.
    Cummins I; Dixon DP; Freitag-Pohl S; Skipsey M; Edwards R
    Drug Metab Rev; 2011 May; 43(2):266-80. PubMed ID: 21425939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delineation of the functional and structural properties of the glutathione transferase family from the plant pathogen Erwinia carotovora.
    Theoharaki C; Chronopoulou E; Vlachakis D; Ataya FS; Giannopoulos P; Maurikou S; Skopelitou K; Papageorgiou AC; Labrou NE
    Funct Integr Genomics; 2019 Jan; 19(1):1-12. PubMed ID: 29938342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive genome-wide analysis of Glutathione S-transferase gene family in potato (Solanum tuberosum L.) and their expression profiling in various anatomical tissues and perturbation conditions.
    Islam MS; Choudhury M; Majlish AK; Islam T; Ghosh A
    Gene; 2018 Jan; 639():149-162. PubMed ID: 28988961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GST profile expression study in some selected plants: in silico approach.
    Banerjee S; Goswami R
    Mol Cell Biochem; 2010 Mar; 336(1-2):109-26. PubMed ID: 20135200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of the glutathione S-Transferase (GST) family in radish reveals a likely role in anthocyanin biosynthesis and heavy metal stress tolerance.
    Gao J; Chen B; Lin H; Liu Y; Wei Y; Chen F; Li W
    Gene; 2020 Jun; 743():144484. PubMed ID: 32081694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis of maize glutathione S-transferase I catalysing the detoxification from chloroacetanilide herbicides.
    Labrou NE; Karavangeli M; Tsaftaris A; Clonis YD
    Planta; 2005 Sep; 222(1):91-7. PubMed ID: 15906083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant glutathione S-transferases and herbicide detoxification.
    Neuefeind T; Reinemer P; Bieseler B
    Biol Chem; 1997; 378(3-4):199-205. PubMed ID: 9165071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation.
    Karavangeli M; Labrou NE; Clonis YD; Tsaftaris A
    Biomol Eng; 2005 Oct; 22(4):121-8. PubMed ID: 16085457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.