These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28391608)

  • 1. Mechanistic Analysis of Fluorescence Quenching of Reduced Nicotinamide Adenine Dinucleotide by Oxamate in Lactate Dehydrogenase Ternary Complexes.
    Peng HL; Callender R
    Photochem Photobiol; 2017 Oct; 93(5):1193-1203. PubMed ID: 28391608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic mechanism of the endogenous lactate dehydrogenase activity of duck epsilon-crystallin.
    Chang GG; Huang SM; Chiou SH
    Arch Biochem Biophys; 1991 Feb; 284(2):285-91. PubMed ID: 1989512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium isotope effect on ternary complex formation of [1-18O]oxamate with NADH and lactate dehydrogenase.
    Gawlita E; Paneth P; Anderson VE
    Biochemistry; 1995 May; 34(18):6050-8. PubMed ID: 7742308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of ternary complexes to study ionizations and isomerizations during catalysis by lactate dehydrogenase.
    Holbrook JJ; Stinson RA
    Biochem J; 1973 Apr; 131(4):739-48. PubMed ID: 4352914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow structural changes shown by the 3-nitrotyrosine-237 residue in pig heart [Tyr(3NO2)237] lactate dehydrogenase.
    Parker DM; Jeckel D; Holbrook JJ
    Biochem J; 1982 Mar; 201(3):465-71. PubMed ID: 7092806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism for Fluorescence Quenching of Tryptophan by Oxamate and Pyruvate: Conjugation and Solvation-Induced Photoinduced Electron Transfer.
    Peng HL; Callender R
    J Phys Chem B; 2018 Jun; 122(25):6483-6490. PubMed ID: 29860828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic studies of binary and ternary complexes of pig heart lactate dehydrogenase.
    Schmid F; Hinz HJ; Jaenicke R
    Biochemistry; 1976 Jul; 15(14):3052-9. PubMed ID: 182202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The approach to the Michaelis complex in lactate dehydrogenase: the substrate binding pathway.
    McClendon S; Zhadin N; Callender R
    Biophys J; 2005 Sep; 89(3):2024-32. PubMed ID: 15980172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The identification of intermediates in the reaction of pig heart lactate dehydrogenase with its substrates.
    Whitaker JR; Yates DW; Bennett NG; Holbrook JJ; Gutfreund H
    Biochem J; 1974 Jun; 139(3):677-97. PubMed ID: 4369310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetics of the interconversion of intermediates of the reaction of pig muscle lactate dehydrogenase with oxidized nicotinamide-adenine dinucleotide and lactate.
    Bennett NG; Gutfreund H
    Biochem J; 1973 Sep; 135(1):81-5. PubMed ID: 4359923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lactate dehydrogenase--reduced nicotinamide--adenine dinucleotide--pyruvate complex. Kinetics of pyruvate binding and quenching of coeznyme fluorescence.
    Südi J
    Biochem J; 1974 Apr; 139(1):251-9. PubMed ID: 4377095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate dehydrogenase-catalyzed stereospecific hydrogen atom transfer from reduced nicotinamide adenine dinucleotide to dicarboxylate radicals.
    Chan PC; Bielski BH
    J Biol Chem; 1975 Sep; 250(18):7266-71. PubMed ID: 170258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active-Loop Dynamics within the Michaelis Complex of Lactate Dehydrogenase from Bacillus stearothermophilus.
    Nie B; Lodewyks K; Deng H; Desamero RZ; Callender R
    Biochemistry; 2016 Jul; 55(27):3803-14. PubMed ID: 27319381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate dehydrogenase undergoes a substantial structural change to bind its substrate.
    Qiu L; Gulotta M; Callender R
    Biophys J; 2007 Sep; 93(5):1677-86. PubMed ID: 17483169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of Toxoplasma gondii LDH1: active-site differences from human lactate dehydrogenases and the structural basis for efficient APAD+ use.
    Kavanagh KL; Elling RA; Wilson DK
    Biochemistry; 2004 Feb; 43(4):879-89. PubMed ID: 14744130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational heterogeneity within the Michaelis complex of lactate dehydrogenase.
    Deng H; Vu DV; Clinch K; Desamero R; Dyer RB; Callender R
    J Phys Chem B; 2011 Jun; 115(23):7670-8. PubMed ID: 21568287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting aspartate aminotransferase in breast cancer.
    Thornburg JM; Nelson KK; Clem BF; Lane AN; Arumugam S; Simmons A; Eaton JW; Telang S; Chesney J
    Breast Cancer Res; 2008; 10(5):R84. PubMed ID: 18922152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the pathway of forming enzymatically productive ligand-protein complexes in lactate dehydrogenase.
    Deng H; Brewer S; Vu DM; Clinch K; Callender R; Dyer RB
    Biophys J; 2008 Jul; 95(2):804-13. PubMed ID: 18390601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dogfish M4 lactate dehydrogenase: reversible inactivation by pyridoxal 5'-phosphate and complete protection in complexes that mimic the active ternary complex.
    Chen SS; Engel PC
    Biochem J; 1975 Nov; 151(2):447-9. PubMed ID: 175780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic studies of the activation of rabbit muscle lactate dehydrogenase by phosphate.
    Ward LD; Winzor DJ
    Biochem J; 1983 Dec; 215(3):685-91. PubMed ID: 6661190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.