BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 2839162)

  • 1. The effects of pH and various salts upon the activity of a series of superoxide dismutases.
    O'Neill P; Davies S; Fielden EM; Calabrese L; Capo C; Marmocchi F; Natoli G; Rotilio G
    Biochem J; 1988 Apr; 251(1):41-6. PubMed ID: 2839162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational, pulse-radiolytic, and structural investigations of lysine-136 and its role in the electrostatic triad of human Cu,Zn superoxide dismutase.
    Fisher CL; Cabelli DE; Hallewell RA; Beroza P; Lo TP; Getzoff ED; Tainer JA
    Proteins; 1997 Sep; 29(1):103-12. PubMed ID: 9294870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the activity-linked electrostatic gradient of bovine Cu, Zn superoxide dismutases conserved in homologous enzymes irrespective of the number and distribution of charges?
    Desideri A; Falconi M; Parisi V; Morante S; Rotilio G
    Free Radic Biol Med; 1988; 5(5-6):313-7. PubMed ID: 3256530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of arginine 143 in the electrostatics and mechanism of Cu,Zn superoxide dismutase: computational and experimental evaluation by mutational analysis.
    Fisher CL; Cabelli DE; Tainer JA; Hallewell RA; Getzoff ED
    Proteins; 1994 May; 19(1):24-34. PubMed ID: 8066083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.
    Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A
    Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary conservativeness of electric field in the Cu,Zn superoxide dismutase active site. Evidence for co-ordinated mutation of charged amino acid residues.
    Desideri A; Falconi M; Polticelli F; Bolognesi M; Djinovic K; Rotilio G
    J Mol Biol; 1992 Jan; 223(1):337-42. PubMed ID: 1731078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of bovine, porcine and yeast superoxide dismutases.
    Marmocchi F; Argese E; Rigo A; Mavelli I; Rossi L; Rotilio G
    Mol Cell Biochem; 1983; 51(2):161-4. PubMed ID: 6343837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic control of the rate-determining step of the copper, zinc superoxide dismutase catalytic reaction.
    Argese E; Viglino P; Rotilio G; Scarpa M; Rigo A
    Biochemistry; 1987 Jun; 26(11):3224-8. PubMed ID: 3607020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative kinetic study between native and chemically modified Cu,Zn superoxide dismutases.
    Argese E; Girotto R; Orsega EF
    Biochem J; 1993 Jun; 292 ( Pt 2)(Pt 2):451-5. PubMed ID: 8503879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli.
    Borders CL; Bjerrum MJ; Schirmer MA; Oliver SG
    Biochemistry; 1998 Aug; 37(32):11323-31. PubMed ID: 9698380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral and physical properties of human extracellular superoxide dismutase: a comparison with CuZn superoxide dismutase.
    Tibell L; Aasa R; Marklund SL
    Arch Biochem Biophys; 1993 Aug; 304(2):429-33. PubMed ID: 8394057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the electrostatic loop charged residues in Cu,Zn superoxide dismutase.
    Polticelli F; Battistoni A; O'Neill P; Rotilio G; Desideri A
    Protein Sci; 1998 Nov; 7(11):2354-8. PubMed ID: 9828001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of microRNA in copper deficiency-induced repression of chloroplastic CuZn-superoxide dismutase genes in the moss Physcomitrella patens.
    Higashi Y; Takechi K; Takano H; Takio S
    Plant Cell Physiol; 2013 Aug; 54(8):1345-55. PubMed ID: 23749811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic properties of Cu,Zn-superoxide dismutase as a function of metal content--order restored.
    Goldstein S; Fridovich I; Czapski G
    Free Radic Biol Med; 2006 Sep; 41(6):937-41. PubMed ID: 16934676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for catalytic dismutation of superoxide by cobalt(II) derivatives of bovine superoxide dismutase in aqueous solution as studied by pulse radiolysis.
    O'Neill P; Fielden EM; Cocco D; Rotilio G; Calabrese L
    Biochem J; 1982 Jul; 205(1):181-7. PubMed ID: 6289808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved enzyme-substrate electrostatic attraction in prokaryotic Cu,Zn superoxide dismutases.
    Folcarelli S; Battistoni A; Falconi M; O'Neill P; Rotilio G; Desideri A
    Biochem Biophys Res Commun; 1998 Mar; 244(3):908-11. PubMed ID: 9535766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular penetration of fluorescently labeled superoxide dismutases of various origins.
    Filipe P; Emerit I; Vassy J; Levy A; Huang V; Freitas J
    Mol Med; 1999 Aug; 5(8):517-25. PubMed ID: 10501655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt effects on beta-glucosidase: pH-profile narrowing.
    Bowers EM; Ragland LO; Byers LD
    Biochim Biophys Acta; 2007 Dec; 1774(12):1500-7. PubMed ID: 17997993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point charge distributions and electrostatic steering in enzyme/substrate encounter: Brownian dynamics of modified copper/zinc superoxide dismutases.
    Sines JJ; Allison SA; McCammon JA
    Biochemistry; 1990 Oct; 29(40):9403-12. PubMed ID: 2248953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions.
    Lushchak V; Semchyshyn H; Mandryk S; Lushchak O
    Arch Biochem Biophys; 2005 Sep; 441(1):35-40. PubMed ID: 16084798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.