These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 28391921)

  • 1. Selected dark sides of biomass-derived biochars as environmental amendments.
    Chen Z; Luo L; Xiao D; Lv J; Wen B; Ma Y; Zhang S
    J Environ Sci (China); 2017 Apr; 54():13-20. PubMed ID: 28391921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure.
    Meng J; Tao M; Wang L; Liu X; Xu J
    Sci Total Environ; 2018 Aug; 633():300-307. PubMed ID: 29574374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of biochar on the presence of nutrients and ryegrass growth in the soil from an abandoned indigenous coking site: The potential role of biochar in the revegetation of contaminated site.
    Zhang G; Guo X; Zhu Y; Han Z; He Q; Zhang F
    Sci Total Environ; 2017 Dec; 601-602():469-477. PubMed ID: 28575825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure.
    Shen X; Zeng J; Zhang D; Wang F; Li Y; Yi W
    Sci Total Environ; 2020 Feb; 704():135283. PubMed ID: 31822406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis.
    Jing F; Pan M; Chen J
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11493-11504. PubMed ID: 29427270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation.
    Srinivasan P; Sarmah AK
    Sci Total Environ; 2015 Jan; 502():471-80. PubMed ID: 25290589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of sludge-based biochar for soil remediation: Characteristics and safety performance of heavy metals influenced by pyrolysis temperatures.
    Xing J; Li L; Li G; Xu G
    Ecotoxicol Environ Saf; 2019 Sep; 180():457-465. PubMed ID: 31121552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil.
    Zhang G; Guo X; Zhao Z; He Q; Wang S; Zhu Y; Yan Y; Liu X; Sun K; Zhao Y; Qian T
    Environ Pollut; 2016 Nov; 218():513-522. PubMed ID: 27460900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk].
    Lu ZL; Li JY; Jiang J; Xu RK
    Huan Jing Ke Xue; 2012 Oct; 33(10):3585-91. PubMed ID: 23233992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars.
    Xing J; Xu G; Li G
    Ecotoxicol Environ Saf; 2021 Jan; 208():111756. PubMed ID: 33396079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suitability of marginal biomass-derived biochars for soil amendment.
    Buss W; Graham MC; Shepherd JG; Mašek O
    Sci Total Environ; 2016 Mar; 547():314-322. PubMed ID: 26789369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of soluble elements from biochars derived from various biomass feedstocks.
    Wu H; Che X; Ding Z; Hu X; Creamer AE; Chen H; Gao B
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1905-15. PubMed ID: 26408115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil.
    Gusiatin ZM; Kurkowski R; Brym S; Wiśniewski D
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21249-21261. PubMed ID: 27495921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Date palm waste biochars alter a soil respiration, microbial biomass carbon, and heavy metal mobility in contaminated mined soil.
    Al-Wabel MI; Usman ARA; Al-Farraj AS; Ok YS; Abduljabbar A; Al-Faraj AI; Sallam AS
    Environ Geochem Health; 2019 Aug; 41(4):1705-1722. PubMed ID: 28424945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry.
    Gao R; Hu H; Fu Q; Li Z; Xing Z; Ali U; Zhu J; Liu Y
    Sci Total Environ; 2020 Aug; 730():139119. PubMed ID: 32402973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure.
    Meng J; Wang L; Zhong L; Liu X; Brookes PC; Xu J; Chen H
    Chemosphere; 2017 Aug; 180():93-99. PubMed ID: 28391157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil.
    Wang T; Sun H; Ren X; Li B; Mao H
    Sci Rep; 2017 Sep; 7(1):12114. PubMed ID: 28935871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of biochar and its application in remediation of contaminated soil.
    Tang J; Zhu W; Kookana R; Katayama A
    J Biosci Bioeng; 2013 Dec; 116(6):653-9. PubMed ID: 23810668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content.
    Ouyang W; Zhao X; Tysklind M; Hao F
    Water Res; 2016 Apr; 92():156-63. PubMed ID: 26852289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.