These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28391922)

  • 1. Influences of anion concentration and valence on dispersion and aggregation of titanium dioxide nanoparticles in aqueous solutions.
    He H; Cheng Y; Yang C; Zeng G; Zhu C; Yan Z
    J Environ Sci (China); 2017 Apr; 54():135-141. PubMed ID: 28391922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of nano-sized titanium dioxide in an aqueous environment: effects of pH, dissolved organic matter and divalent cations.
    Yang XN; Cui FY
    Water Sci Technol; 2013; 68(2):276-82. PubMed ID: 23863417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.
    Nur Y; Lead JR; Baalousha M
    Sci Total Environ; 2015 Dec; 535():45-53. PubMed ID: 25432129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Cd(II) on the stability of humic acid-coated nano-TiO
    Wang L; Lu Y; Yang C; Chen C; Huang W; Dang Z
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23144-23152. PubMed ID: 28828557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Feb; 470-471():92-8. PubMed ID: 24140685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles.
    French RA; Jacobson AR; Kim B; Isley SL; Penn RL; Baveye PC
    Environ Sci Technol; 2009 Mar; 43(5):1354-9. PubMed ID: 19350903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions.
    Shih YH; Liu WS; Su YF
    Environ Toxicol Chem; 2012 Aug; 31(8):1693-8. PubMed ID: 22639241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO
    Farner Budarz J; Turolla A; Piasecki AF; Bottero JY; Antonelli M; Wiesner MR
    Langmuir; 2017 Mar; 33(11):2770-2779. PubMed ID: 28238264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a typical antibiotic (tetracycline) on the aggregation of TiO
    Qi N; Wang P; Wang C; Ao Y
    J Hazard Mater; 2018 Jan; 341():187-197. PubMed ID: 28780433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of common inorganic anions on the rates of photocatalytic degradation of sodium dodecylbenzenesulfonate over illuminated titanium dioxide.
    Xia XH; Xu JL; Yun Y
    J Environ Sci (China); 2002 Apr; 14(2):188-94. PubMed ID: 12046286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles.
    Lee J; Bartelt-Hunt SL; Li Y; Morton M
    Sci Total Environ; 2015 Apr; 511():195-202. PubMed ID: 25544338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histidine adsorption on TiO2 nanoparticles: an integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano-bio interactions.
    Mudunkotuwa IA; Grassian VH
    Langmuir; 2014 Jul; 30(29):8751-60. PubMed ID: 24978817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F; Le Coustumer P; Stoll S
    Water Res; 2013 Oct; 47(16):6052-63. PubMed ID: 23969399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A case study of aggregation behaviors of titanium dioxide nanoparticles in the presence of dodecylbenzene sulfonate in natural water.
    Du X; Wang X; You S; Wang Q; Gong X
    J Environ Sci (China); 2015 Oct; 36():84-92. PubMed ID: 26456610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and aggregation of rutile titanium dioxide nanoparticles in saturated porous media in the presence of ammonium.
    Xu X; Xu N; Cheng X; Guo P; Chen Z; Wang D
    Chemosphere; 2017 Feb; 169():9-17. PubMed ID: 27855333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excess titanium dioxide nanoparticles on the cell surface induce cytotoxicity by hindering ion exchange and disrupting exocytosis processes.
    Wang Y; Yao C; Li C; Ding L; Liu J; Dong P; Fang H; Lei Z; Shi G; Wu M
    Nanoscale; 2015 Aug; 7(30):13105-15. PubMed ID: 26176908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.
    Lee J; Bartelt-Hunt SL; Li Y; Gilrein EJ
    Chemosphere; 2016 Jul; 154():187-193. PubMed ID: 27045636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics.
    Bouhaik IS; Leroy P; Ollivier P; Azaroual M; Mercury L
    J Colloid Interface Sci; 2013 Sep; 406():75-85. PubMed ID: 23806415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.