These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

763 related articles for article (PubMed ID: 28392174)

  • 1. eIF5A Functions Globally in Translation Elongation and Termination.
    Schuller AP; Wu CC; Dever TE; Buskirk AR; Green R
    Mol Cell; 2017 Apr; 66(2):194-205.e5. PubMed ID: 28392174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences.
    Pelechano V; Alepuz P
    Nucleic Acids Res; 2017 Jul; 45(12):7326-7338. PubMed ID: 28549188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Not4 and Not5 modulate translation elongation by Rps7A ubiquitination, Rli1 moonlighting, and condensates that exclude eIF5A.
    Allen GE; Panasenko OO; Villanyi Z; Zagatti M; Weiss B; Pagliazzo L; Huch S; Polte C; Zahoran S; Hughes CS; Pelechano V; Ignatova Z; Collart MA
    Cell Rep; 2021 Aug; 36(9):109633. PubMed ID: 34469733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. eIF5A binds to translational machinery components and affects translation in yeast.
    Zanelli CF; Maragno AL; Gregio AP; Komili S; Pandolfi JR; Mestriner CA; Lustri WR; Valentini SR
    Biochem Biophys Res Commun; 2006 Oct; 348(4):1358-66. PubMed ID: 16914118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing.
    Ivanov IP; Shin BS; Loughran G; Tzani I; Young-Baird SK; Cao C; Atkins JF; Dever TE
    Mol Cell; 2018 Apr; 70(2):254-264.e6. PubMed ID: 29677493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fertility and polarized cell growth depends on eIF5A for translation of polyproline-rich formins in Saccharomyces cerevisiae.
    Li T; Belda-Palazón B; Ferrando A; Alepuz P
    Genetics; 2014 Aug; 197(4):1191-200. PubMed ID: 24923804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro yeast reconstituted translation system reveals function of eIF5A for synthesis of long polypeptide.
    Abe T; Nagai R; Shimazaki S; Kondo S; Nishimura S; Sakaguchi Y; Suzuki T; Imataka H; Tomita K; Takeuchi-Tomita N
    J Biochem; 2020 May; 167(5):451-462. PubMed ID: 32053170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis.
    Shin BS; Katoh T; Gutierrez E; Kim JR; Suga H; Dever TE
    Nucleic Acids Res; 2017 Aug; 45(14):8392-8402. PubMed ID: 28637321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay.
    Shoemaker CJ; Eyler DE; Green R
    Science; 2010 Oct; 330(6002):369-72. PubMed ID: 20947765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. eIF5A promotes translation of polyproline motifs.
    Gutierrez E; Shin BS; Woolstenhulme CJ; Kim JR; Saini P; Buskirk AR; Dever TE
    Mol Cell; 2013 Jul; 51(1):35-45. PubMed ID: 23727016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypusine-containing protein eIF5A promotes translation elongation.
    Saini P; Eyler DE; Green R; Dever TE
    Nature; 2009 May; 459(7243):118-21. PubMed ID: 19424157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. eIF5A has a function in the elongation step of translation in yeast.
    Gregio AP; Cano VP; Avaca JS; Valentini SR; Zanelli CF
    Biochem Biophys Res Commun; 2009 Mar; 380(4):785-90. PubMed ID: 19338753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity.
    Galvão FC; Rossi D; Silveira Wda S; Valentini SR; Zanelli CF
    PLoS One; 2013; 8(4):e60140. PubMed ID: 23573236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a Negative Cooperativity between eIF5A and eEF2 on Binding to the Ribosome.
    Rossi D; Barbosa NM; Galvão FC; Boldrin PE; Hershey JW; Zanelli CF; Fraser CS; Valentini SR
    PLoS One; 2016; 11(4):e0154205. PubMed ID: 27115996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping surface residues of eIF5A that are important for binding to the ribosome using alanine scanning mutagenesis.
    Barbosa NM; Boldrin PE; Rossi D; Yamamoto PA; Watanabe TF; Serrão VH; Hershey JW; Fraser CS; Valentini SR; Zanelli CF
    Amino Acids; 2016 Oct; 48(10):2363-74. PubMed ID: 27388480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms that ensure speed and fidelity in eukaryotic translation termination.
    Lawson MR; Lessen LN; Wang J; Prabhakar A; Corsepius NC; Green R; Puglisi JD
    Science; 2021 Aug; 373(6557):876-882. PubMed ID: 34413231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. eIF5A and EF-P: two unique translation factors are now traveling the same road.
    Rossi D; Kuroshu R; Zanelli CF; Valentini SR
    Wiley Interdiscip Rev RNA; 2014; 5(2):209-22. PubMed ID: 24402910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical footprinting reveals conformational changes of 18S and 28S rRNAs at different steps of translation termination on the human ribosome.
    Bulygin KN; Bartuli YS; Malygin AA; Graifer DM; Frolova LY; Karpova GG
    RNA; 2016 Feb; 22(2):278-89. PubMed ID: 26655225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA helicase DDX19 stabilizes ribosomal elongation and termination complexes.
    Mikhailova T; Shuvalova E; Ivanov A; Susorov D; Shuvalov A; Kolosov PM; Alkalaeva E
    Nucleic Acids Res; 2017 Feb; 45(3):1307-1318. PubMed ID: 28180304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosome profiling analysis of eEF3-depleted Saccharomyces cerevisiae.
    Kasari V; Margus T; Atkinson GC; Johansson MJO; Hauryliuk V
    Sci Rep; 2019 Feb; 9(1):3037. PubMed ID: 30816176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.