These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 28392409)
1. A rapid isothermal assay for the detection of Hop stunt viroid in hop plants (Humulus lupulus), and its application in disease surveys. Kappagantu M; Villamor DEV; Bullock JM; Eastwell KC J Virol Methods; 2017 Jul; 245():81-85. PubMed ID: 28392409 [TBL] [Abstract][Full Text] [Related]
2. Diagnostic real-time RT-PCR for the simultaneous detection of Citrus exocortis viroid and Hop stunt viroid. Papayiannis LC J Virol Methods; 2014 Feb; 196():93-9. PubMed ID: 24252553 [TBL] [Abstract][Full Text] [Related]
3. Multiplex detection, distribution, and genetic diversity of Hop stunt viroid and Citrus exocortis viroid infecting citrus in Taiwan. Lin CY; Wu ML; Shen TL; Yeh HH; Hung TH Virol J; 2015 Feb; 12():11. PubMed ID: 25645458 [TBL] [Abstract][Full Text] [Related]
4. Optimization and Validation of Singleplex and Multiplex RT-qPCR for Detection of Guček T; Jakše J; Radišek S Plant Dis; 2023 Nov; 107(11):3592-3601. PubMed ID: 37261880 [TBL] [Abstract][Full Text] [Related]
5. Rapid differentiation of citrus Hop stunt viroid variants by real-time RT-PCR and high resolution melting analysis. Loconsole G; Onelge N; Yokomi RK; Kubaa RA; Savino V; Saponari M Mol Cell Probes; 2013; 27(5-6):221-9. PubMed ID: 23932930 [TBL] [Abstract][Full Text] [Related]
6. Hop stunt viroid: Effect on Host (Humulus lupulus) Transcriptome and Its Interactions With Hop Powdery Mildew (Podospheara macularis). Kappagantu M; Bullock JM; Nelson ME; Eastwell KC Mol Plant Microbe Interact; 2017 Oct; 30(10):842-851. PubMed ID: 28703029 [TBL] [Abstract][Full Text] [Related]
7. A mutual titer-enhancing relationship and similar localization patterns between Citrus exocortis viroid and Hop stunt viroid co-infecting two citrus cultivars. Lin CY; Wu ML; Shen TL; Hung TH Virol J; 2015 Sep; 12():142. PubMed ID: 26377407 [TBL] [Abstract][Full Text] [Related]
8. Propagation and some physiological effects of Citrus bark cracking viroid and Apple fruit crinkle viroid in multiple infected hop (Humulus lupulus L.). Matoušek J; Siglová K; Jakše J; Radišek S; Brass JRJ; Tsushima T; Guček T; Duraisamy GS; Sano T; Steger G J Plant Physiol; 2017 Jun; 213():166-177. PubMed ID: 28395198 [TBL] [Abstract][Full Text] [Related]
9. A novel multiplex RT-PCR probe capture hybridization (RT-PCR-ELISA) for simultaneous detection of six viroids in four genera: Apscaviroid, Hostuviroid, Pelamoviroid, and Pospiviroid. Shamloul AM; Faggioli F; Keith JM; Hadidi A J Virol Methods; 2002 Aug; 105(1):115-21. PubMed ID: 12176148 [TBL] [Abstract][Full Text] [Related]
10. First Report of Hop stunt viroid Infecting Citrus Trees in Georgia, USA. Stackhouse T; Waliullah S; Oliver JE; Williams-Woodward J; Ali ME Plant Dis; 2020 Sep; ():. PubMed ID: 32931391 [TBL] [Abstract][Full Text] [Related]
11. Experimental transmission of pospiviroid populations to weed species characteristic of potato and hop fields. Matousek J; Orctová L; Ptácek J; Patzak J; Dedic P; Steger G; Riesner D J Virol; 2007 Nov; 81(21):11891-9. PubMed ID: 17715233 [TBL] [Abstract][Full Text] [Related]
12. Cultivated grapevines represent a symptomless reservoir for the transmission of hop stunt viroid to hop crops: 15 years of evolutionary analysis. Kawaguchi-Ito Y; Li SF; Tagawa M; Araki H; Goshono M; Yamamoto S; Tanaka M; Narita M; Tanaka K; Liu SX; Shikata E; Sano T PLoS One; 2009 Dec; 4(12):e8386. PubMed ID: 20041179 [TBL] [Abstract][Full Text] [Related]
13. Imbalance in expression of hop (Humulus lupulus) chalcone synthase H1 and its regulators during hop stunt viroid pathogenesis. Füssy Z; Patzak J; Stehlík J; Matoušek J J Plant Physiol; 2013 May; 170(7):688-95. PubMed ID: 23395540 [TBL] [Abstract][Full Text] [Related]
15. Phylogenetic analysis of hop and grapevine isolates of hop stunt viroid supports a grapevine origin for hop stunt disease. Sano T; Mimura R; Ohshima K Virus Genes; 2001 Jan; 22(1):53-9. PubMed ID: 11210940 [TBL] [Abstract][Full Text] [Related]
16. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens. Saponari M; Loconsole G; Liao HH; Jiang B; Savino V; Yokomi RK J Virol Methods; 2013 Nov; 193(2):478-86. PubMed ID: 23891873 [TBL] [Abstract][Full Text] [Related]
17. Detection of Multiple Infections of Citrus exocortis viroid, Citrus viroid III, and Hop stunt viroid Variants in Hunan Province, China. Rizza S; Catara A; Ma XF; Deng Z Plant Dis; 2007 Sep; 91(9):1205. PubMed ID: 30780682 [TBL] [Abstract][Full Text] [Related]
18. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark cracking viroid (CBCVd) infection. Mishra AK; Duraisamy GS; Matoušek J; Radisek S; Javornik B; Jakse J BMC Genomics; 2016 Nov; 17(1):919. PubMed ID: 27846797 [TBL] [Abstract][Full Text] [Related]
19. Identification of Hop stunt viroid infecting Citrus limon in China using small RNAs deep sequencing approach. Su X; Fu S; Qian Y; Xu Y; Zhou X Virol J; 2015 Jul; 12():103. PubMed ID: 26148502 [TBL] [Abstract][Full Text] [Related]
20. Molecular phylogeny and secondary structure analysis of hop stunt viroid (HSVd) associated with Mulberry (Morus alba) in India. N S; Sano T; Naoi T; R JG Arch Microbiol; 2024 May; 206(5):240. PubMed ID: 38698140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]