These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28392780)

  • 1. Biocontrol Potentials of Antimicrobial Peptide Producing
    Vinodkumar S; Nakkeeran S; Renukadevi P; Malathi VG
    Front Microbiol; 2017; 8():446. PubMed ID: 28392780
    [No Abstract]   [Full Text] [Related]  

  • 2. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.
    Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E
    J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining the Genome of
    R S; Nakkeeran S; Saranya N; Senthilraja C; Renukadevi P; Krishnamoorthy AS; El Enshasy HA; El-Adawi H; Malathi VG; Salmen SH; Ansari MJ; Khan N; Sayyed RZ
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry.
    Athukorala SN; Fernando WG; Rashid KY
    Can J Microbiol; 2009 Sep; 55(9):1021-32. PubMed ID: 19898544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of an endophytic bacteria Bacillus amyloliquefaciens 3-5 as biocontrol agent against potato scab.
    Cui L; Yang C; Wang Y; Ma T; Cai F; Wei L; Jin M; Osei R; Zhang J; Tang M
    Microb Pathog; 2022 Feb; 163():105382. PubMed ID: 34974122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot.
    Wu Y; Yuan J; Raza W; Shen Q; Huang Q
    J Microbiol Biotechnol; 2014 Oct; 24(10):1327-36. PubMed ID: 24861342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3.
    Ding L; Guo W; Chen X
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5367-5377. PubMed ID: 31053917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional Profiling of Diffusible Lipopeptides and Fungal Virulence Genes During
    Farzand A; Moosa A; Zubair M; Khan AR; Ayaz M; Massawe VC; Gao X
    Phytopathology; 2020 Feb; 110(2):317-326. PubMed ID: 31322486
    [No Abstract]   [Full Text] [Related]  

  • 9. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains.
    Sabaté DC; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC
    Microbiol Res; 2018 Jun; 211():21-30. PubMed ID: 29705203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat.
    Ramarathnam R; Bo S; Chen Y; Fernando WG; Xuewen G; de Kievit T
    Can J Microbiol; 2007 Jul; 53(7):901-11. PubMed ID: 17898845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacillus pumilus strain YSPMK11 as plant growth promoter and bicontrol agent against Sclerotinia sclerotiorum.
    Kaushal M; Kumar A; Kaushal R
    3 Biotech; 2017 Jun; 7(2):90. PubMed ID: 28550408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital gene expression profiling of the transcriptional response to
    Liu J; Hu X; He H; Zhang X; Guo J; Bai J; Cheng Y
    Front Microbiol; 2022; 13():1025771. PubMed ID: 36406417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual RNA Sequencing Analysis of
    Cheng Y; Gao X; He H; Zhang X; Wang R; Liu J
    Front Microbiol; 2022; 13():924313. PubMed ID: 35814672
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Perez KJ; Viana JD; Lopes FC; Pereira JQ; Dos Santos DM; Oliveira JS; Velho RV; Crispim SM; Nicoli JR; Brandelli A; Nardi RM
    Front Microbiol; 2017; 8():61. PubMed ID: 28197131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and metabolic features of Bacillus cereus, inhibiting the growth of Sclerotinia sclerotiorum by synthesizing secondary metabolites.
    Hu J; Dong B; Wang D; Meng H; Li X; Zhou H
    Arch Microbiol; 2022 Dec; 205(1):8. PubMed ID: 36454319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic and plant-growth promoting novel
    Panneerselvam P; Senapati A; Kumar U; Sharma L; Lepcha P; Prabhukarthikeyan SR; Jahan A; Parameshwaran C; Govindharaj GPP; Lenka S; Nayak PK; Mitra D; Sagarika MS; Thangappan S; Sivakumar U
    3 Biotech; 2019 Nov; 9(11):416. PubMed ID: 31696021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocontrol of Wheat Crown Rot Using
    Li S; Xu J; Fu L; Xu G; Lin X; Qiao J; Xia Y
    Pathogens; 2022 May; 11(5):. PubMed ID: 35631116
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative transcriptome analysis of Sclerotinia sclerotiorum revealed its response mechanisms to the biological control agent, Bacillus amyloliquefaciens.
    Yang X; Zhang L; Xiang Y; Du L; Huang X; Liu Y
    Sci Rep; 2020 Jul; 10(1):12576. PubMed ID: 32724140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial peptide genes in Bacillus strains from plant environments.
    Mora I; Cabrefiga J; Montesinos E
    Int Microbiol; 2011 Dec; 14(4):213-23. PubMed ID: 22569759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mustard seed-associated endophytes suppress Sclerotinia sclerotiorum causing Sclerotinia rot in mustard crop.
    Sinha T; Malakar C; Talukdar NC
    Int Microbiol; 2023 Aug; 26(3):487-500. PubMed ID: 36542232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.