These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28393207)

  • 1. RNA interference-mediated silencing of ppGalNAc-T1 and ppGalNAc-T2 inhibits invasion and increases chemosensitivity potentially by reducing terminal α2,3 sialylation and MMP14 expression in triple‑negative breast cancer cells.
    Qiu H; Xu X; Liu M; Wang Z; Yuan Y; Liu C; Xu L; Wu S
    Mol Med Rep; 2017 Jun; 15(6):3724-3734. PubMed ID: 28393207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polypeptide N-acetylgalactosaminyltransferase 2 regulates cellular metastasis-associated behavior in gastric cancer.
    Hua D; Shen L; Xu L; Jiang Z; Zhou Y; Yue A; Zou S; Cheng Z; Wu S
    Int J Mol Med; 2012 Dec; 30(6):1267-74. PubMed ID: 22992780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunolocalisation of members of the polypeptide N-acetylgalactosaminyl transferase (ppGalNAc-T) family is consistent with biologically relevant altered cell surface glycosylation in breast cancer.
    Brooks SA; Carter TM; Bennett EP; Clausen H; Mandel U
    Acta Histochem; 2007; 109(4):273-84. PubMed ID: 17448526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ppGalNAc T1 as a potential novel marker for human bladder cancer.
    Ding MX; Wang HF; Wang JS; Zhan H; Zuo YG; Yang DL; Liu JY; Wang W; Ke CX; Yan RP
    Asian Pac J Cancer Prev; 2012; 13(11):5653-7. PubMed ID: 23317233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. regulation of the invasion and metastasis of human glioma cells by polypeptide N-acetylgalactosaminyltransferase 2.
    Liu J; Yang L; Jin M; Xu L; Wu S
    Mol Med Rep; 2011; 4(6):1299-305. PubMed ID: 21874244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GALNT14 mediates tumor invasion and migration in breast cancer cell MCF-7.
    Huanna T; Tao Z; Xiangfei W; Longfei A; Yuanyuan X; Jianhua W; Cuifang Z; Manjing J; Wenjing C; Shaochuan Q; Feifei X; Naikang L; Jinchao Z; Chen W
    Mol Carcinog; 2015 Oct; 54(10):1159-71. PubMed ID: 24962947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix Metallopeptidase 14 Plays an Important Role in Regulating Tumorigenic Gene Expression and Invasion Ability of HeLa Cells.
    Zhang YH; Wang JJ; Li M; Zheng HX; Xu L; Chen YG
    Int J Gynecol Cancer; 2016 Mar; 26(3):600-6. PubMed ID: 26825836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells.
    Park JJ; Yi JY; Jin YB; Lee YJ; Lee JS; Lee YS; Ko YG; Lee M
    Biochem Pharmacol; 2012 Apr; 83(7):849-57. PubMed ID: 22266356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ppGalNAc-T4-catalyzed O-Glycosylation of TGF-β type Ⅱ receptor regulates breast cancer cells metastasis potential.
    Wu Q; Zhang C; Zhang K; Chen Q; Wu S; Huang H; Huang T; Zhang N; Wang X; Li W; Liu Y; Zhang J
    J Biol Chem; 2021; 296():100119. PubMed ID: 33234595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 6 (ppGalNAc-T6) mRNA as a potential new marker for detection of bone marrow-disseminated breast cancer cells.
    Freire T; Berois N; Sóñora C; Varangot M; Barrios E; Osinaga E
    Int J Cancer; 2006 Sep; 119(6):1383-8. PubMed ID: 16596643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FOXM1 regulates expression of eukaryotic elongation factor 2 kinase and promotes proliferation, invasion and tumorgenesis of human triple negative breast cancer cells.
    Hamurcu Z; Ashour A; Kahraman N; Ozpolat B
    Oncotarget; 2016 Mar; 7(13):16619-35. PubMed ID: 26918606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers.
    Blanchard Z; Paul BT; Craft B; ElShamy WM
    Breast Cancer Res; 2015 Jan; 17(1):5. PubMed ID: 25583261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. siRNA-mediated silencing of bFGF gene inhibits the proliferation, migration, and invasion of human pituitary adenoma cells.
    Zhou K; Fan YD; Duysenbi S; Wu PF; Feng ZH; Qian Z; Zhang TR
    Tumour Biol; 2017 Jun; 39(6):1010428317704805. PubMed ID: 28656882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of RAB1B promotes triple-negative breast cancer metastasis by activating TGF-β/SMAD signaling.
    Jiang HL; Sun HF; Gao SP; Li LD; Hu X; Wu J; Jin W
    Oncotarget; 2015 Jun; 6(18):16352-65. PubMed ID: 25970785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance-based dissection of a glycosyltransferase specificity for the mucin MUC1 tandem repeat.
    Brokx RD; Revers L; Zhang Q; Yang S; Mal TK; Ikura M; Gariépy J
    Biochemistry; 2003 Dec; 42(47):13817-25. PubMed ID: 14636048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organelle Specific O-Glycosylation Drives MMP14 Activation, Tumor Growth, and Metastasis.
    Nguyen AT; Chia J; Ros M; Hui KM; Saltel F; Bard F
    Cancer Cell; 2017 Nov; 32(5):639-653.e6. PubMed ID: 29136507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of peptide sequence and neighboring residue glycosylation on the substrate specificity of the uridine 5'-diphosphate-alpha-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyl transferases T1 and T2: kinetic modeling of the porcine and canine submaxillary gland mucin tandem repeats.
    Gerken TA; Tep C; Rarick J
    Biochemistry; 2004 Aug; 43(30):9888-900. PubMed ID: 15274643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S100A4 silencing suppresses proliferation, angiogenesis and invasion of thyroid cancer cells through downregulation of MMP-9 and VEGF.
    Jia W; Gao XJ; Zhang ZD; Yang ZX; Zhang G
    Eur Rev Med Pharmacol Sci; 2013 Jun; 17(11):1495-508. PubMed ID: 23771538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agonists and knockdown of estrogen receptor β differentially affect invasion of triple-negative breast cancer cells in vitro.
    Schüler-Toprak S; Häring J; Inwald EC; Moehle C; Ortmann O; Treeck O
    BMC Cancer; 2016 Dec; 16(1):951. PubMed ID: 28003019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy.
    Kren BT; Unger GM; Abedin MJ; Vogel RI; Henzler CM; Ahmed K; Trembley JH
    Breast Cancer Res; 2015; 17():19. PubMed ID: 25837326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.