BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28393214)

  • 1. A novel mutation (c.121‑13T>A) in the polypyrimidine tract of the splice acceptor site of intron 2 causes exon 3 skipping in mitochondrial acetoacetyl-CoA thiolase gene.
    Aoyama Y; Sasai H; Abdelkreem E; Otsuka H; Nakama M; Kumar S; Aroor S; Shukla A; Fukao T
    Mol Med Rep; 2017 Jun; 15(6):3879-3884. PubMed ID: 28393214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-nucleotide substitution T to A in the polypyrimidine stretch at the splice acceptor site of intron 9 causes exon 10 skipping in the
    Sasai H; Aoyama Y; Otsuka H; Abdelkreem E; Nakama M; Hori T; Ohnishi H; Turner L; Fukao T
    Mol Genet Genomic Med; 2017 Mar; 5(2):177-184. PubMed ID: 28361105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exon 10 skipping in ACAT1 caused by a novel c.949G>A mutation located at an exonic splice enhancer site.
    Otsuka H; Sasai H; Nakama M; Aoyama Y; Abdelkreem E; Ohnishi H; Konstantopoulou V; Sass JO; Fukao T
    Mol Med Rep; 2016 Nov; 14(5):4906-4910. PubMed ID: 27748876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel mutation (c.951C>T) in an exonic splicing enhancer results in exon 10 skipping in the human mitochondrial acetoacetyl-CoA thiolase gene.
    Fukao T; Horikawa R; Naiki Y; Tanaka T; Takayanagi M; Yamaguchi S; Kondo N
    Mol Genet Metab; 2010 Aug; 100(4):339-44. PubMed ID: 20488739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel exonic mutation at -13 from 5' splice site causing exon skipping in a girl with mitochondrial acetoacetyl-coenzyme A thiolase deficiency.
    Fukao T; Yamaguchi S; Wakazono A; Orii T; Hoganson G; Hashimoto T
    J Clin Invest; 1994 Mar; 93(3):1035-41. PubMed ID: 7907600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel single-base substitution (c.1124A>G) that activates a 5-base upstream cryptic splice donor site within exon 11 in the human mitochondrial acetoacetyl-CoA thiolase gene.
    Fukao T; Boneh A; Aoki Y; Kondo N
    Mol Genet Metab; 2008 Aug; 94(4):417-421. PubMed ID: 18511318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel single-base substitution (380C>T) that activates a 5-base downstream cryptic splice-acceptor site within exon 5 in almost all transcripts in the human mitochondrial acetoacetyl-CoA thiolase gene.
    Nakamura K; Fukao T; Perez-Cerda C; Luque C; Song XQ; Naiki Y; Kohno Y; Ugarte M; Kondo N
    Mol Genet Metab; 2001 Feb; 72(2):115-21. PubMed ID: 11161837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intronic antisense Alu elements have a negative splicing effect on the inclusion of adjacent downstream exons.
    Nakama M; Otsuka H; Ago Y; Sasai H; Abdelkreem E; Aoyama Y; Fukao T
    Gene; 2018 Jul; 664():84-89. PubMed ID: 29698748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different clinical presentation in siblings with mitochondrial acetoacetyl-CoA thiolase deficiency and identification of two novel mutations.
    Thümmler S; Dupont D; Acquaviva C; Fukao T; de Ricaud D
    Tohoku J Exp Med; 2010 Jan; 220(1):27-31. PubMed ID: 20046049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A G-to-T transversion at the splice acceptor site of dystrophin exon 14 shows multiple splicing outcomes that are not exemplified by transition mutations.
    Ota M; Takeshima Y; Nishida A; Awano H; Lee T; Yagi M; Matsuo M
    Genet Test Mol Biomarkers; 2012 Jan; 16(1):3-8. PubMed ID: 21854195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an Alu-mediated tandem duplication of exons 8 and 9 in a patient with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency.
    Fukao T; Zhang G; Rolland MO; Zabot MT; Guffon N; Aoki Y; Kondo N
    Mol Genet Metab; 2007 Dec; 92(4):375-8. PubMed ID: 17719254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Alu-mediated, large deletion-spanning exons 2-4 in a patient with mitochondrial acetoacetyl-CoA thiolase deficiency.
    Zhang G; Fukao T; Sakurai S; Yamada K; Michael Gibson K; Kondo N
    Mol Genet Metab; 2006 Nov; 89(3):222-6. PubMed ID: 16935016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of MLPA for human ACAT1 gene and identification of a heterozygous Alu-mediated deletion of exons 3 and 4 in a patient with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency.
    Fukao T; Aoyama Y; Murase K; Hori T; Harijan RK; Wierenga RK; Boneh A; Kondo N
    Mol Genet Metab; 2013; 110(1-2):184-7. PubMed ID: 23920042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of three mutant alleles of the gene for mitochondrial acetoacetyl-coenzyme A thiolase. A complete analysis of two generations of a family with 3-ketothiolase deficiency.
    Fukao T; Yamaguchi S; Orii T; Schutgens RB; Osumi T; Hashimoto T
    J Clin Invest; 1992 Feb; 89(2):474-9. PubMed ID: 1346617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial acetoacetyl-coenzyme A thiolase gene: a novel 68-bp deletion involving 3' splice site of intron 7, causing exon 8 skipping in a Caucasian patient with beta-ketothiolase deficiency.
    Fukao T; Song XQ; Yamaguchi S; Orii T; Wanders RJ; Poll-The BT; Hashimoto T
    Hum Mutat; 1995; 5(1):94-6. PubMed ID: 7728155
    [No Abstract]   [Full Text] [Related]  

  • 16. Mutation update on ACAT1 variants associated with mitochondrial acetoacetyl-CoA thiolase (T2) deficiency.
    Abdelkreem E; Harijan RK; Yamaguchi S; Wierenga RK; Fukao T
    Hum Mutat; 2019 Oct; 40(10):1641-1663. PubMed ID: 31268215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryptic splice activation but not exon skipping is observed in minigene assays of dystrophin c.9361+1G>A mutation identified by NGS.
    Niba ETE; Nishida A; Tran VK; Vu DC; Matsumoto M; Awano H; Lee T; Takeshima Y; Nishio H; Matsuo M
    J Hum Genet; 2017 Apr; 62(5):531-537. PubMed ID: 28100912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single base substitutions at the initiator codon in the mitochondrial acetoacetyl-CoA thiolase (ACAT1/T2) gene result in production of varying amounts of wild-type T2 polypeptide.
    Fukao T; Matsuo N; Zhang GX; Urasawa R; Kubo T; Kohno Y; Kondo N
    Hum Mutat; 2003 Jun; 21(6):587-92. PubMed ID: 12754704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene.
    Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M
    J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atypical 5' splice sites cause CFTR exon 9 to be vulnerable to skipping.
    Hefferon TW; Broackes-Carter FC; Harris A; Cutting GR
    Am J Hum Genet; 2002 Aug; 71(2):294-303. PubMed ID: 12068373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.