BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28393522)

  • 1. Physical Chemistry of the Freezing Process of Atmospheric Aqueous Drops.
    Bogdan A; Molina MJ
    J Phys Chem A; 2017 Apr; 121(16):3109-3116. PubMed ID: 28393522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H
    Eur J Pharm Biopharm; 2016 Dec; 109():49-60. PubMed ID: 27664024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization data on the freezing process of micrometer-scaled aqueous citric acid drops.
    Bogdan A; Molina MJ; Tenhu H
    Data Brief; 2017 Feb; 10():144-146. PubMed ID: 27981204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic apparatus for the study of ice nucleation in supercooled water drops.
    Stan CA; Schneider GF; Shevkoplyas SS; Hashimoto M; Ibanescu M; Wiley BJ; Whitesides GM
    Lab Chip; 2009 Aug; 9(16):2293-305. PubMed ID: 19636459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of freezing process in situ upon cooling and warming of aqueous solutions.
    Bogdan A; Molina MJ; Tenhu H; Bertel E; Bogdan N; Loerting T
    Sci Rep; 2014 Dec; 4():7414. PubMed ID: 25491562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice growth from supercooled aqueous solutions of benzene, naphthalene, and phenanthrene.
    Liyana-Arachchi TP; Valsaraj KT; Hung FR
    J Phys Chem A; 2012 Aug; 116(33):8539-46. PubMed ID: 22839303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase separation during freezing upon warming of aqueous solutions.
    Bogdan A; Loerting T
    J Chem Phys; 2014 Nov; 141(18):18C533. PubMed ID: 25399198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops.
    Yang F; Cruikshank O; He W; Kostinski A; Shaw RA
    Phys Rev E; 2018 Feb; 97(2-1):023103. PubMed ID: 29548219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of secondary ice in a frozen NaCl freeze-concentrated solution on the extent of methylene blue aggregation.
    Veselý L; Závacká K; Štůsek R; Olbert M; Neděla V; Shalaev E; Heger D
    Int J Pharm; 2024 Jan; 650():123691. PubMed ID: 38072147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.
    Hudait A; Molinero V
    J Am Chem Soc; 2014 Jun; 136(22):8081-93. PubMed ID: 24820354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of solute crystallisation in aqueous H(+)-NH(4)(+)-SO4(2-)-H2O droplets.
    Murray BJ; Bertram AK
    Phys Chem Chem Phys; 2008 Jun; 10(22):3287-301. PubMed ID: 18500406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.
    Zobrist B; Marcolli C; Peter T; Koop T
    J Phys Chem A; 2008 May; 112(17):3965-75. PubMed ID: 18363389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameterizations for ice nucleation in biological and atmospheric systems.
    Koop T; Zobrist B
    Phys Chem Chem Phys; 2009 Dec; 11(46):10839-50. PubMed ID: 19924318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A water activity based model of heterogeneous ice nucleation kinetics for freezing of water and aqueous solution droplets.
    Knopf DA; Alpert PA
    Faraday Discuss; 2013; 165():513-34. PubMed ID: 24601020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cubic ice can be formed directly in the water phase of vitrified aqueous solutions.
    Kajiwara K; Thanatuksom P; Murase N; Franks F
    Cryo Letters; 2008; 29(1):29-34. PubMed ID: 18392287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.