These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28393522)

  • 41. Phase Behavior of Poloxamer 188 Aqueous Solutions at Subzero Temperatures: A Neutron and X-ray Scattering Study.
    Yuan X; Krueger S; Sztucki M; Jones RL; Curtis JE; Shalaev E
    J Phys Chem B; 2021 Feb; 125(5):1476-1486. PubMed ID: 33507083
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microheterogeneity in frozen protein solutions.
    Twomey A; Kurata K; Nagare Y; Takamatsu H; Aksan A
    Int J Pharm; 2015 Jun; 487(1-2):91-100. PubMed ID: 25888798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new approach for freezing of aqueous solutions under active control of the nucleation temperature.
    Petersen A; Schneider H; Rau G; Glasmacher B
    Cryobiology; 2006 Oct; 53(2):248-57. PubMed ID: 16887112
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immersion freezing of supermicron mineral dust particles: freezing results, testing different schemes for describing ice nucleation, and ice nucleation active site densities.
    Wheeler MJ; Mason RH; Steunenberg K; Wagstaff M; Chou C; Bertram AK
    J Phys Chem A; 2015 May; 119(19):4358-72. PubMed ID: 25345526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ice nucleation in solutions and freeze-avoiding insects-homogeneous or heterogeneous?
    Zachariassen KE; Kristiansen E; Pedersen SA; Hammel HT
    Cryobiology; 2004 Jun; 48(3):309-21. PubMed ID: 15157779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of ice content in biological model solutions when frozen under high pressure.
    Guignon B; Aparicio C; Otero L; Sanz PD
    Biotechnol Prog; 2009; 25(2):454-60. PubMed ID: 19294740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impact of heat treatment on the physical properties of noncrystalline multisolute systems concentrated in frozen aqueous solutions.
    Izutsu K; Yomota C; Kawanishi T
    J Pharm Sci; 2011 Dec; 100(12):5244-53. PubMed ID: 21780120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.
    Pach E; Rodriguez L; Verdaguer A
    J Phys Chem B; 2018 Jan; 122(2):818-826. PubMed ID: 28922601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of Organic Hydrocarbons in Atmospheric Ice Formation via Contact Freezing.
    Collier KN; Brooks SD
    J Phys Chem A; 2016 Dec; 120(51):10169-10180. PubMed ID: 27966972
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation.
    Ciobanu VG; Marcolli C; Krieger UK; Zuend A; Peter T
    J Phys Chem A; 2010 Sep; 114(35):9486-95. PubMed ID: 20712361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying.
    Oesterle J; Franks F; Auffret T
    Pharm Dev Technol; 1998 May; 3(2):175-83. PubMed ID: 9653754
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nucleation and solidification in static arrays of monodisperse drops.
    Edd JF; Humphry KJ; Irimia D; Weitz DA; Toner M
    Lab Chip; 2009 Jul; 9(13):1859-65. PubMed ID: 19532960
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aqueous aerosol may build up an elevated upper tropospheric ice supersaturation and form mixed-phase particles after freezing.
    Bogdan A; Molina MJ
    J Phys Chem A; 2010 Mar; 114(8):2821-9. PubMed ID: 20136162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of polymer size and cosolutes on phase separation of poly(vinylpyrrolidone) (PVP) and dextran in frozen solutions.
    Izutsu K; Aoyagi N; Kojima S
    J Pharm Sci; 2005 Apr; 94(4):709-17. PubMed ID: 15682383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phase-Field Modeling of Freeze Concentration of Protein Solutions.
    Fan TH; Li JQ; Minatovicz B; Soha E; Sun L; Patel S; Chaudhuri B; Bogner R
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30959994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measurements of thermodynamic and optical properties of selected aqueous organic and organic-inorganic mixtures of atmospheric relevance.
    Lienhard DM; Bones DL; Zuend A; Krieger UK; Reid JP; Peter T
    J Phys Chem A; 2012 Oct; 116(40):9954-68. PubMed ID: 22974307
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amorphous-Amorphous Phase Separation of Freeze-Concentrated Protein and Amino Acid Excipients for Lyophilized Formulations.
    Izutsu KI; Yoshida H; Shibata H; Goda Y
    Chem Pharm Bull (Tokyo); 2016; 64(12):1674-1680. PubMed ID: 27904076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ice growth in supercooled solutions of antifreeze glycoprotein.
    Harrison K; Hallett J; Burcham TS; Feeney RE; Kerr WL; Yeh Y
    Nature; 1987 Jul 16-22; 328(6127):241-3. PubMed ID: 3600804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.