These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28393921)
1. Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision. Gandier JA; Langelaan DN; Won A; O'Donnell K; Grondin JL; Spencer HL; Wong P; Tillier E; Yip C; Smith SP; Master ER Sci Rep; 2017 Apr; 7():45863. PubMed ID: 28393921 [TBL] [Abstract][Full Text] [Related]
2. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Askolin S; Linder M; Scholtmeijer K; Tenkanen M; Penttilä M; de Vocht ML; Wösten HA Biomacromolecules; 2006 Apr; 7(4):1295-301. PubMed ID: 16602752 [TBL] [Abstract][Full Text] [Related]
3. Nanoscale reduction in surface friction of polymer surfaces modified with Sc3 hydrophobin from Schizophyllum commune. Misra R; Li J; Cannon GC; Morgan SE Biomacromolecules; 2006 May; 7(5):1463-70. PubMed ID: 16677027 [TBL] [Abstract][Full Text] [Related]
4. Expression, purification, and refolding of diverse class IB hydrophobins. Kenward C; Vergunst KL; Langelaan DN Protein Expr Purif; 2020 Dec; 176():105732. PubMed ID: 32866612 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the structure and self-assembly of two distinct class IB hydrophobins. Vergunst KL; Kenward C; Langelaan DN Appl Microbiol Biotechnol; 2022 Dec; 106(23):7831-7843. PubMed ID: 36329133 [TBL] [Abstract][Full Text] [Related]
6. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins. Ren Q; Kwan AH; Sunde M Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020 [TBL] [Abstract][Full Text] [Related]
7. Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi. Pham CLL; Rodríguez de Francisco B; Valsecchi I; Dazzoni R; Pillé A; Lo V; Ball SR; Cappai R; Wien F; Kwan AH; Guijarro JI; Sunde M J Mol Biol; 2018 Oct; 430(20):3784-3801. PubMed ID: 30096347 [TBL] [Abstract][Full Text] [Related]
8. Hydrophobins, the fungal coat unravelled. Wösten HA; de Vocht ML Biochim Biophys Acta; 2000 Sep; 1469(2):79-86. PubMed ID: 10998570 [TBL] [Abstract][Full Text] [Related]
9. The functional role of Cys3-Cys4 loop in hydrophobin HGFI. Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. de Vocht ML; Scholtmeijer K; van der Vegte EW; de Vries OM; Sonveaux N; Wösten HA; Ruysschaert JM; Hadziloannou G; Wessels JG; Robillard GT Biophys J; 1998 Apr; 74(4):2059-68. PubMed ID: 9545064 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution. Zykwinska A; Guillemette T; Bouchara JP; Cuenot S Biochim Biophys Acta; 2014 Jul; 1844(7):1231-7. PubMed ID: 24732577 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface. Fan H; Wang X; Zhu J; Robillard GT; Mark AE Proteins; 2006 Sep; 64(4):863-73. PubMed ID: 16770796 [TBL] [Abstract][Full Text] [Related]
13. Surface-Induced Hydrophobin Assemblies with Versatile Properties and Distinct Underlying Structures. Siddiquee R; Lo V; Johnston CL; Buffier AW; Ball SR; Ciofani JL; Zeng YC; Mahjoub M; Chrzanowski W; Rezvani-Baboli S; Brown L; Pham CLL; Sunde M; Kwan AH Biomacromolecules; 2023 Nov; 24(11):4783-4797. PubMed ID: 37747808 [TBL] [Abstract][Full Text] [Related]
14. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins. Paananen A; Weich S; Szilvay GR; Leitner M; Tappura K; Ebner A J Biol Chem; 2021; 296():100728. PubMed ID: 33933454 [TBL] [Abstract][Full Text] [Related]
15. The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity. Kwan AH; Macindoe I; Vukasin PV; Morris VK; Kass I; Gupte R; Mark AE; Templeton MD; Mackay JP; Sunde M J Mol Biol; 2008 Oct; 382(3):708-20. PubMed ID: 18674544 [TBL] [Abstract][Full Text] [Related]
16. Solid-state NMR spectroscopy of functional amyloid from a fungal hydrophobin: a well-ordered β-sheet core amidst structural heterogeneity. Morris VK; Linser R; Wilde KL; Duff AP; Sunde M; Kwan AH Angew Chem Int Ed Engl; 2012 Dec; 51(50):12621-5. PubMed ID: 23125123 [TBL] [Abstract][Full Text] [Related]
17. Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides. Scholtmeijer K; de Vocht ML; Rink R; Robillard GT; Wösten HA J Biol Chem; 2009 Sep; 284(39):26309-14. PubMed ID: 19654326 [TBL] [Abstract][Full Text] [Related]
18. Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions. Lienemann M; Grunér MS; Paananen A; Siika-Aho M; Linder MB Biomacromolecules; 2015 Apr; 16(4):1283-92. PubMed ID: 25724119 [TBL] [Abstract][Full Text] [Related]
19. Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering. Szilvay GR; Paananen A; Laurikainen K; Vuorimaa E; Lemmetyinen H; Peltonen J; Linder MB Biochemistry; 2007 Mar; 46(9):2345-54. PubMed ID: 17297923 [TBL] [Abstract][Full Text] [Related]
20. Cloning and characterization of a gene coding for a hydrophobin, Fv-hyd1, specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes. Yamada M; Sakuraba S; Shibata K; Inatomi S; Okazaki M; Shimosaka M Appl Microbiol Biotechnol; 2005 Apr; 67(2):240-6. PubMed ID: 15834718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]