These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28393921)
21. New clues into the self-assembly of Vmh2, a basidiomycota class I hydrophobin. Pennacchio A; Cicatiello P; Notomista E; Giardina P; Piscitelli A Biol Chem; 2018 Jul; 399(8):895-901. PubMed ID: 29897879 [TBL] [Abstract][Full Text] [Related]
22. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. Wösten HA; Schuren FH; Wessels JG EMBO J; 1994 Dec; 13(24):5848-54. PubMed ID: 7813424 [TBL] [Abstract][Full Text] [Related]
23. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces. Cheng Y; Wang B; Wang Y; Zhang H; Liu C; Yang L; Chen Z; Wang Y; Yang H; Wang Z J Colloid Interface Sci; 2020 Aug; 573():384-395. PubMed ID: 32298932 [TBL] [Abstract][Full Text] [Related]
24. Comparative analysis of surface coating properties of five hydrophobins from Aspergillus nidulans and Trichoderma reseei. Winandy L; Hilpert F; Schlebusch O; Fischer R Sci Rep; 2018 Aug; 8(1):12033. PubMed ID: 30104653 [TBL] [Abstract][Full Text] [Related]
25. Structural basis for rodlet assembly in fungal hydrophobins. Kwan AH; Winefield RD; Sunde M; Matthews JM; Haverkamp RG; Templeton MD; Mackay JP Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3621-6. PubMed ID: 16537446 [TBL] [Abstract][Full Text] [Related]
26. Structural hierarchy in molecular films of two class II hydrophobins. Paananen A; Vuorimaa E; Torkkeli M; Penttilä M; Kauranen M; Ikkala O; Lemmetyinen H; Serimaa R; Linder MB Biochemistry; 2003 May; 42(18):5253-8. PubMed ID: 12731866 [TBL] [Abstract][Full Text] [Related]
27. Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins. Piscitelli A; Cicatiello P; Gravagnuolo AM; Sorrentino I; Pezzella C; Giardina P Biomolecules; 2017 Jun; 7(3):. PubMed ID: 28672843 [TBL] [Abstract][Full Text] [Related]
28. Predicting the self-assembly film structure of class II hydrophobin NC2 and estimating its structural characteristics. Chang HJ; Choi H; Na S Colloids Surf B Biointerfaces; 2020 Nov; 195():111269. PubMed ID: 32739772 [TBL] [Abstract][Full Text] [Related]
29. Self-assembly of class II hydrophobins on polar surfaces. Grunér MS; Szilvay GR; Berglin M; Lienemann M; Laaksonen P; Linder MB Langmuir; 2012 Mar; 28(9):4293-300. PubMed ID: 22315927 [TBL] [Abstract][Full Text] [Related]
30. Characterisation and comparative analysis of hydrophobin isolated from Pleurotus floridanus (PfH). Rafeeq CM; Vaishnav AB; Manzur Ali PP Protein Expr Purif; 2021 Jun; 182():105834. PubMed ID: 33516827 [TBL] [Abstract][Full Text] [Related]
31. Backbone and sidechain ¹H, ¹³C and ¹⁵N chemical shift assignments of the hydrophobin DewA from Aspergillus nidulans. Morris VK; Kwan AH; Mackay JP; Sunde M Biomol NMR Assign; 2012 Apr; 6(1):83-6. PubMed ID: 21845363 [TBL] [Abstract][Full Text] [Related]
32. Class I Hydrophobin Vmh2 Adopts Atypical Mechanisms to Self-Assemble into Functional Amyloid Fibrils. Gravagnuolo AM; Longobardi S; Luchini A; Appavou MS; De Stefano L; Notomista E; Paduano L; Giardina P Biomacromolecules; 2016 Mar; 17(3):954-64. PubMed ID: 26828412 [TBL] [Abstract][Full Text] [Related]
33. The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties. Wang X; Shi F; Wösten HA; Hektor H; Poolman B; Robillard GT Biophys J; 2005 May; 88(5):3434-43. PubMed ID: 15749774 [TBL] [Abstract][Full Text] [Related]
34. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin. Niu B; Li B; Wang H; Guo R; Xu H; Qiao M; Li W Colloids Surf B Biointerfaces; 2017 Feb; 150():344-351. PubMed ID: 27842929 [TBL] [Abstract][Full Text] [Related]
36. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability. Lo VC; Ren Q; Pham CL; Morris VK; Kwan AH; Sunde M Nanomaterials (Basel); 2014 Sep; 4(3):827-843. PubMed ID: 28344251 [TBL] [Abstract][Full Text] [Related]
37. Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation. Chang HJ; Lee M; Na S Colloids Surf B Biointerfaces; 2019 Jan; 173():128-138. PubMed ID: 30278361 [TBL] [Abstract][Full Text] [Related]
38. A Structural and Functional Role for Disulfide Bonds in a Class II Hydrophobin. Sallada ND; Dunn KJ; Berger BW Biochemistry; 2018 Feb; 57(5):645-653. PubMed ID: 29277996 [TBL] [Abstract][Full Text] [Related]
39. Hydrophobins: multipurpose proteins. Wösten HA Annu Rev Microbiol; 2001; 55():625-46. PubMed ID: 11544369 [TBL] [Abstract][Full Text] [Related]
40. Molecular dynamics study of the folding of hydrophobin SC3 at a hydrophilic/hydrophobic interface. Zangi R; de Vocht ML; Robillard GT; Mark AE Biophys J; 2002 Jul; 83(1):112-24. PubMed ID: 12080104 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]