These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28393958)

  • 1. Two-dimensional germanium monochalcogenide photocatalyst for water splitting under ultraviolet, visible to near-infrared light.
    Ji Y; Yang M; Dong H; Hou T; Wang L; Li Y
    Nanoscale; 2017 Jun; 9(25):8608-8615. PubMed ID: 28393958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photocatalytic activity for water splitting of blue-phase GeS and GeSe monolayers via biaxial straining.
    Gu D; Tao X; Chen H; Zhu W; Ouyang Y; Peng Q
    Nanoscale; 2019 Jan; 11(5):2335-2342. PubMed ID: 30663763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light.
    Li X; Li Z; Yang J
    Phys Rev Lett; 2014 Jan; 112(1):018301. PubMed ID: 24483934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional polarized MoTe
    Gu D; Tao X; Chen H; Ouyang Y; Zhu W; Du Y
    RSC Adv; 2021 Oct; 11(54):34048-34058. PubMed ID: 35497299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.
    Hu W; Lin L; Zhang R; Yang C; Yang J
    J Am Chem Soc; 2017 Nov; 139(43):15429-15436. PubMed ID: 29027456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-dimensional cadmium sulphide nanotubes for photocatalytic water splitting.
    Ju L; Dai Y; Wei W; Li M; Liang Y; Huang B
    Phys Chem Chem Phys; 2018 Jan; 20(3):1904-1913. PubMed ID: 29297522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing SnS/MoS
    Jia X; Wang J; Lu Y; Sun J; Li Y; Wang Y; Zhang J
    Phys Chem Chem Phys; 2022 Sep; 24(35):21321-21330. PubMed ID: 36043354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2.
    Liu H; Xu B; Liu JM; Yin J; Miao F; Duan CG; Wan XG
    Phys Chem Chem Phys; 2016 Jun; 18(21):14222-7. PubMed ID: 27167677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Two-Dimensional Janus MoSiGeN
    Yu Y; Zhou J; Guo Z; Sun Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28090-28097. PubMed ID: 34115478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel photocatalytic water splitting solar-to-hydrogen energy conversion: CdLa
    Reshak AH
    Phys Chem Chem Phys; 2018 Mar; 20(13):8848-8858. PubMed ID: 29542783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-free highly efficient photocatalysts for overall water splitting: C
    Qi S; Fan Y; Wang J; Song X; Li W; Zhao M
    Nanoscale; 2020 Jan; 12(1):306-315. PubMed ID: 31825061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.
    Zou Z; Ye J; Sayama K; Arakawa H
    Nature; 2001 Dec; 414(6864):625-7. PubMed ID: 11740556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The InSe/SiH type-II van der Waals heterostructure as a promising water splitting photocatalyst: a first-principles study.
    Sheng W; Xu Y; Liu M; Nie G; Wang J; Gong S
    Phys Chem Chem Phys; 2020 Sep; 22(37):21436-21444. PubMed ID: 32945319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of photocatalytic activity of zinc-germanium oxynitride solid solution for overall water splitting under visible irradiation.
    Takanabe K; Uzawa T; Wang X; Maeda K; Katayama M; Kubota J; Kudo A; Domen K
    Dalton Trans; 2009 Dec; (45):10055-62. PubMed ID: 19904433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PdSeO
    Qiao M; Liu J; Wang Y; Li Y; Chen Z
    J Am Chem Soc; 2018 Sep; 140(38):12256-12262. PubMed ID: 30169028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na-Based monolayer photocatalysts with an extremely high intrinsic electric-field for water splitting.
    Chen W; Zhang JM; Xia QL; Nie YZ; Guo GH
    Phys Chem Chem Phys; 2020 Jul; 22(28):16007-16012. PubMed ID: 32632421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable electronic structures of germanium monochalcogenide nanosheets via light non-metallic atom functionalization: a first-principles study.
    Ding Y; Wang Y
    Phys Chem Chem Phys; 2016 Aug; 18(33):23080-8. PubMed ID: 27491896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic Electric Fields in Two-dimensional Materials Boost the Solar-to-Hydrogen Efficiency for Photocatalytic Water Splitting.
    Fu CF; Sun J; Luo Q; Li X; Hu W; Yang J
    Nano Lett; 2018 Oct; 18(10):6312-6317. PubMed ID: 30238753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayer CS as a metal-free photocatalyst with high carrier mobility and tunable band structure: a first-principles study.
    Yang XL; Ye XJ; Liu CS; Yan XH
    J Phys Condens Matter; 2018 Feb; 30(6):065701. PubMed ID: 29292700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forming heterojunction: an effective strategy to enhance the photocatalytic efficiency of a new metal-free organic photocatalyst for water splitting.
    Li H; Hu H; Bao C; Guo F; Zhang X; Liu X; Hua J; Tan J; Wang A; Zhou H; Yang B; Qu Y; Liu X
    Sci Rep; 2016 Jul; 6():29327. PubMed ID: 27470223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.