BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 28394318)

  • 1. The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors.
    Hardin H; Zhang R; Helein H; Buehler D; Guo Z; Lloyd RV
    Lab Invest; 2017 Oct; 97(10):1142-1151. PubMed ID: 28394318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs.
    Hardin H; Helein H; Meyer K; Robertson S; Zhang R; Zhong W; Lloyd RV
    Lab Invest; 2018 Sep; 98(9):1133-1142. PubMed ID: 29967342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of microRNAs in the regulation of breast cancer stem cells.
    Liu S; Clouthier SG; Wicha MS
    J Mammary Gland Biol Neoplasia; 2012 Mar; 17(1):15-21. PubMed ID: 22331423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer stem-like cells and thyroid cancer.
    Guo Z; Hardin H; Lloyd RV
    Endocr Relat Cancer; 2014 Oct; 21(5):T285-300. PubMed ID: 24788702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial-mesenchymal transition in squamous cell carcinoma.
    Geng S; Guo Y; Wang Q; Li L; Wang J
    Arch Dermatol Res; 2013 Jan; 305(1):35-47. PubMed ID: 22740085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation.
    Louie E; Nik S; Chen JS; Schmidt M; Song B; Pacson C; Chen XF; Park S; Ju J; Chen EI
    Breast Cancer Res; 2010; 12(6):R94. PubMed ID: 21067584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stemness in human thyroid cancers and derived cell lines: the role of asymmetrically dividing cancer stem cells resistant to chemotherapy.
    Ma R; Minsky N; Morshed SA; Davies TF
    J Clin Endocrinol Metab; 2014 Mar; 99(3):E400-9. PubMed ID: 24823711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EGFR inhibitors prevent induction of cancer stem-like cells in esophageal squamous cell carcinoma by suppressing epithelial-mesenchymal transition.
    Sato F; Kubota Y; Natsuizaka M; Maehara O; Hatanaka Y; Marukawa K; Terashita K; Suda G; Ohnishi S; Shimizu Y; Komatsu Y; Ohashi S; Kagawa S; Kinugasa H; Whelan KA; Nakagawa H; Sakamoto N
    Cancer Biol Ther; 2015; 16(6):933-40. PubMed ID: 25897987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness.
    Bao B; Azmi AS; Ali S; Ahmad A; Li Y; Banerjee S; Kong D; Sarkar FH
    Biochim Biophys Acta; 2012 Dec; 1826(2):272-96. PubMed ID: 22579961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miR-148a inhibits self-renewal of thyroid cancer stem cells via repressing INO80 expression.
    Sheng W; Chen Y; Gong Y; Dong T; Zhang B; Gao W
    Oncol Rep; 2016 Dec; 36(6):3387-3396. PubMed ID: 27779717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review.
    Dzobo K; Senthebane DA; Ganz C; Thomford NE; Wonkam A; Dandara C
    Cells; 2020 Aug; 9(8):. PubMed ID: 32823711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-34a regulates epithelial-mesenchymal transition and cancer stem cell phenotype of head and neck squamous cell carcinoma in vitro.
    Sun Z; Hu W; Xu J; Kaufmann AM; Albers AE
    Int J Oncol; 2015 Oct; 47(4):1339-50. PubMed ID: 26323460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Significance of Cancer Stem Cells and Epithelial-Mesenchymal Transition in Metastasis and Anti-Cancer Therapy.
    Liang L; Kaufmann AM
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative.
    Biddle A; Liang X; Gammon L; Fazil B; Harper LJ; Emich H; Costea DE; Mackenzie IC
    Cancer Res; 2011 Aug; 71(15):5317-26. PubMed ID: 21685475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer stem cells (CSCs) in cancer progression and therapy.
    Najafi M; Farhood B; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):8381-8395. PubMed ID: 30417375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FZD7 accelerates hepatic metastases in pancreatic cancer by strengthening EMT and stemness associated with TGF-β/SMAD3 signaling.
    Zhang Z; Xu Y
    Mol Med; 2022 Jul; 28(1):82. PubMed ID: 35854234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal/HER2 breast carcinomas: integrating molecular taxonomy with cancer stem cell dynamics to predict primary resistance to trastuzumab (Herceptin).
    Martin-Castillo B; Oliveras-Ferraros C; Vazquez-Martin A; Cufí S; Moreno JM; Corominas-Faja B; Urruticoechea A; Martín ÁG; López-Bonet E; Menendez JA
    Cell Cycle; 2013 Jan; 12(2):225-45. PubMed ID: 23255137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIF-1α induces the epithelial-mesenchymal transition in gastric cancer stem cells through the Snail pathway.
    Yang SW; Zhang ZG; Hao YX; Zhao YL; Qian F; Shi Y; Li PA; Liu CY; Yu PW
    Oncotarget; 2017 Feb; 8(6):9535-9545. PubMed ID: 28076840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversal of epithelial-mesenchymal transition and inhibition of tumor stemness of breast cancer cells through advanced combined chemotherapy.
    Cui Y; Zhao M; Yang Y; Xu R; Tong L; Liang J; Zhang X; Sun Y; Fan Y
    Acta Biomater; 2022 Oct; 152():380-392. PubMed ID: 36028199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer stem cells.
    Yu Z; Pestell TG; Lisanti MP; Pestell RG
    Int J Biochem Cell Biol; 2012 Dec; 44(12):2144-51. PubMed ID: 22981632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.