BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 28394323)

  • 1. Sharp wave ripples during learning stabilize the hippocampal spatial map.
    Roux L; Hu B; Eichler R; Stark E; Buzsáki G
    Nat Neurosci; 2017 Jun; 20(6):845-853. PubMed ID: 28394323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta.
    Nokia MS; Waselius T; Sahramäki J; Penttonen M
    J Neurophysiol; 2020 May; 123(5):1671-1681. PubMed ID: 32208887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro.
    Hofer KT; Kandrács Á; Ulbert I; Pál I; Szabó C; Héja L; Wittner L
    Hippocampus; 2015 Feb; 25(2):169-86. PubMed ID: 25209976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Mechanism for the Grid-to-Place Cell Transformation Revealed by Transgenic Depolarization of Medial Entorhinal Cortex Layer II.
    Kanter BR; Lykken CM; Avesar D; Weible A; Dickinson J; Dunn B; Borgesius NZ; Roudi Y; Kentros CG
    Neuron; 2017 Mar; 93(6):1480-1492.e6. PubMed ID: 28334610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing subthreshold dynamics of hippocampal neurons by pulsed optogenetics.
    Valero M; Zutshi I; Yoon E; Buzsáki G
    Science; 2022 Feb; 375(6580):570-574. PubMed ID: 35113721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hippocampal sharp-wave ripples and their spike assembly content are regulated by the medial entorhinal cortex.
    Zutshi I; Buzsáki G
    Curr Biol; 2023 Sep; 33(17):3648-3659.e4. PubMed ID: 37572665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-duration hippocampal sharp wave ripples improve memory.
    Fernández-Ruiz A; Oliva A; Fermino de Oliveira E; Rocha-Almeida F; Tingley D; Buzsáki G
    Science; 2019 Jun; 364(6445):1082-1086. PubMed ID: 31197012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Object and place information processing by CA1 hippocampal neurons of C57BL/6J mice.
    Ásgeirsdóttir HN; Cohen SJ; Stackman RW
    J Neurophysiol; 2020 Mar; 123(3):1247-1264. PubMed ID: 32023149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples.
    Oliva A; Fernández-Ruiz A; Buzsáki G; Berényi A
    Neuron; 2016 Sep; 91(6):1342-1355. PubMed ID: 27593179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial representations of self and other in the hippocampus.
    Danjo T; Toyoizumi T; Fujisawa S
    Science; 2018 Jan; 359(6372):213-218. PubMed ID: 29326273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A possible role of ectopic action potentials in the in vitro hippocampal sharp wave-ripple complexes.
    Papatheodoropoulos C
    Neuroscience; 2008 Dec; 157(3):495-501. PubMed ID: 18938226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abnormal wiring of CCK
    Del Pino I; Brotons-Mas JR; Marques-Smith A; Marighetto A; Frick A; Marín O; Rico B
    Nat Neurosci; 2017 Jun; 20(6):784-792. PubMed ID: 28394324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-induced plasticity regulates hippocampal sharp wave-ripple drive.
    Girardeau G; Cei A; Zugaro M
    J Neurosci; 2014 Apr; 34(15):5176-83. PubMed ID: 24719097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat.
    Ego-Stengel V; Wilson MA
    Hippocampus; 2010 Jan; 20(1):1-10. PubMed ID: 19816984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.
    Jahnke S; Timme M; Memmesheimer RM
    J Neurosci; 2015 Dec; 35(49):16236-58. PubMed ID: 26658873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective suppression of hippocampal ripples impairs spatial memory.
    Girardeau G; Benchenane K; Wiener SI; Buzsáki G; Zugaro MB
    Nat Neurosci; 2009 Oct; 12(10):1222-3. PubMed ID: 19749750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay.
    Yamamoto J; Tonegawa S
    Neuron; 2017 Sep; 96(1):217-227.e4. PubMed ID: 28957670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Role for the Locus Coeruleus in Hippocampal CA1 Place Cell Reorganization during Spatial Reward Learning.
    Kaufman AM; Geiller T; Losonczy A
    Neuron; 2020 Mar; 105(6):1018-1026.e4. PubMed ID: 31980319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impairment of Sharp-Wave Ripples in a Murine Model of Dravet Syndrome.
    Cheah CS; Lundstrom BN; Catterall WA; Oakley JC
    J Neurosci; 2019 Nov; 39(46):9251-9260. PubMed ID: 31537705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants of different deep and superficial CA1 pyramidal cell dynamics during sharp-wave ripples.
    Valero M; Cid E; Averkin RG; Aguilar J; Sanchez-Aguilera A; Viney TJ; Gomez-Dominguez D; Bellistri E; de la Prida LM
    Nat Neurosci; 2015 Sep; 18(9):1281-1290. PubMed ID: 26214372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.