These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 28394323)

  • 61. Functional perturbation of forebrain principal neurons reveals differential effects in novel and well-learned tasks.
    Stoneham ET; McHail DG; Boggs KN; Albani SH; Carty JA; Evans RC; Hamilton KA; Saadat VM; Hussain S; Greer ME; Dumas TC
    Brain Res; 2017 Sep; 1671():1-13. PubMed ID: 28666957
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Partial disinhibition is required for transition of stimulus-induced sharp wave-ripple complexes into recurrent epileptiform discharges in rat hippocampal slices.
    Liotta A; Caliskan G; ul Haq R; Hollnagel JO; Rösler A; Heinemann U; Behrens CJ
    J Neurophysiol; 2011 Jan; 105(1):172-87. PubMed ID: 20881199
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Hippocampal output area CA1 broadcasts a generalized novelty signal during an object-place recognition task.
    Larkin MC; Lykken C; Tye LD; Wickelgren JG; Frank LM
    Hippocampus; 2014 Jul; 24(7):773-83. PubMed ID: 24596296
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hippocampal place cells have goal-oriented vector fields during navigation.
    Ormond J; O'Keefe J
    Nature; 2022 Jul; 607(7920):741-746. PubMed ID: 35794477
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tracking the course of hippocampal representations during learning: when is the map required?
    Schimanski LA; Lipa P; Barnes CA
    J Neurosci; 2013 Feb; 33(7):3094-106. PubMed ID: 23407964
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Parallel emergence of stable and dynamic memory engrams in the hippocampus.
    Hainmueller T; Bartos M
    Nature; 2018 Jun; 558(7709):292-296. PubMed ID: 29875406
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Activity-dependent plasticity of mouse hippocampal assemblies in vitro.
    Keller MK; Draguhn A; Both M; Reichinnek S
    Front Neural Circuits; 2015; 9():21. PubMed ID: 26041998
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of a hallucinogenic serotonin 5-HT
    Zhang G; Cinalli D; Stackman RW
    Hippocampus; 2017 May; 27(5):558-569. PubMed ID: 28176400
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multiscale representation of very large environments in the hippocampus of flying bats.
    Eliav T; Maimon SR; Aljadeff J; Tsodyks M; Ginosar G; Las L; Ulanovsky N
    Science; 2021 May; 372(6545):. PubMed ID: 34045327
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ionic mechanisms of the effects of sleep deprivation on excitability in hippocampal pyramidal neurons.
    Yang RH; Wang WT; Hou XH; Hu SJ; Chen JY
    Brain Res; 2010 Jul; 1343():135-42. PubMed ID: 20471377
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cholinergic plasticity of oscillating neuronal assemblies in mouse hippocampal slices.
    Zylla MM; Zhang X; Reichinnek S; Draguhn A; Both M
    PLoS One; 2013; 8(11):e80718. PubMed ID: 24260462
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sharp-Wave Ripples Orchestrate the Induction of Synaptic Plasticity during Reactivation of Place Cell Firing Patterns in the Hippocampus.
    Sadowski JH; Jones MW; Mellor JR
    Cell Rep; 2016 Mar; 14(8):1916-29. PubMed ID: 26904941
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A developmental increase of inhibition promotes the emergence of hippocampal ripples.
    Pochinok I; Stöber TM; Triesch J; Chini M; Hanganu-Opatz IL
    Nat Commun; 2024 Jan; 15(1):738. PubMed ID: 38272901
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning.
    Buzsáki G
    Hippocampus; 2015 Oct; 25(10):1073-188. PubMed ID: 26135716
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hippocampal functional organization: A microstructure of the place cell network encoding space.
    Pavlides C; Donishi T; Ribeiro S; Mello CV; Blanco W; Ogawa S
    Neurobiol Learn Mem; 2019 May; 161():122-134. PubMed ID: 30965113
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 77. In Vivo Characterization of Neurophysiological Diversity in the Lateral Supramammillary Nucleus during Hippocampal Sharp-wave Ripples of Adult Rats.
    Vicente AF; Slézia A; Ghestem A; Bernard C; Quilichini PP
    Neuroscience; 2020 May; 435():95-111. PubMed ID: 32222556
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hippocampal place cell sequences differ during correct and error trials in a spatial memory task.
    Zheng C; Hwaun E; Loza CA; Colgin LL
    Nat Commun; 2021 Jun; 12(1):3373. PubMed ID: 34099727
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Intracellular correlates of spatial memory acquisition in hippocampal slices: long-term disinhibition of CA1 pyramidal cells.
    Gusev PA; Alkon DL
    J Neurophysiol; 2001 Aug; 86(2):881-99. PubMed ID: 11495958
    [TBL] [Abstract][Full Text] [Related]  

  • 80. RippleNet: a Recurrent Neural Network for Sharp Wave Ripple (SPW-R) Detection.
    Hagen E; Chambers AR; Einevoll GT; Pettersen KH; Enger R; Stasik AJ
    Neuroinformatics; 2021 Jul; 19(3):493-514. PubMed ID: 33394388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.