BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 28394410)

  • 1. Nanotechnology for Electroanalytical Biosensors of Reactive Oxygen and Nitrogen Species.
    Seenivasan R; Kolodziej C; Karunakaran C; Burda C
    Chem Rec; 2017 Sep; 17(9):886-901. PubMed ID: 28394410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis.
    Rojas D; Hernández-Rodríguez JF; Della Pelle F; Escarpa A; Compagnone D
    Mikrochim Acta; 2022 Feb; 189(3):102. PubMed ID: 35152341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species.
    Chen X; Tian X; Shin I; Yoon J
    Chem Soc Rev; 2011 Sep; 40(9):4783-804. PubMed ID: 21629957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Electrochemical Measurements of Reactive Oxygen and Nitrogen Species in Nontransformed and Metastatic Human Breast Cells.
    Li Y; Hu K; Yu Y; Rotenberg SA; Amatore C; Mirkin MV
    J Am Chem Soc; 2017 Sep; 139(37):13055-13062. PubMed ID: 28845981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward selective detection of reactive oxygen and nitrogen species with the use of fluorogenic probes--Limitations, progress, and perspectives.
    Debowska K; Debski D; Hardy M; Jakubowska M; Kalyanaraman B; Marcinek A; Michalski R; Michalowski B; Ouari O; Sikora A; Smulik R; Zielonka J
    Pharmacol Rep; 2015 Aug; 67(4):756-64. PubMed ID: 26321278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical quantification of reactive oxygen and nitrogen: challenges and opportunities.
    Borgmann S
    Anal Bioanal Chem; 2009 May; 394(1):95-105. PubMed ID: 19280182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROS and RNS in plant physiology: an overview.
    Del Río LA
    J Exp Bot; 2015 May; 66(10):2827-37. PubMed ID: 25873662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species.
    Chen X; Wang F; Hyun JY; Wei T; Qiang J; Ren X; Shin I; Yoon J
    Chem Soc Rev; 2016 May; 45(10):2976-3016. PubMed ID: 27092436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012.
    Kielland A; Blom T; Nandakumar KS; Holmdahl R; Blomhoff R; Carlsen H
    Free Radic Biol Med; 2009 Sep; 47(6):760-6. PubMed ID: 19539751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of reactive oxygen and reactive nitrogen species in skeletal muscle.
    Murrant CL; Reid MB
    Microsc Res Tech; 2001 Nov; 55(4):236-48. PubMed ID: 11748862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Reactive oxygen and nitrogen species in inflammatory process].
    Rutkowski R; Pancewicz SA; Rutkowski K; Rutkowska J
    Pol Merkur Lekarski; 2007 Aug; 23(134):131-6. PubMed ID: 18044345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of reactive oxygen and nitrogen species in rat aorta using the dichlorofluorescein assay.
    Korystov YN; Emel'yanov MO; Korystova AF; Levitman MK; Shaposhnikova VV
    Free Radic Res; 2009 Feb; 43(2):149-55. PubMed ID: 19204868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons.
    Lee CT; Yu LE; Wang JY
    Nitric Oxide; 2016 Apr; 54():38-50. PubMed ID: 26891889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability of ROS and RNS detection in hematopoietic stem cells--potential issues with probes and target cell population.
    Vlaski-Lafarge M; Ivanovic Z
    J Cell Sci; 2015 Nov; 128(21):3849-60. PubMed ID: 26527201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances of electrochemical sensors for detecting and monitoring ROS/RNS.
    Zhao S; Zang G; Zhang Y; Liu H; Wang N; Cai S; Durkan C; Xie G; Wang G
    Biosens Bioelectron; 2021 May; 179():113052. PubMed ID: 33601131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione dimerization-based plasmonic nanoswitch for biodetection of reactive oxygen and nitrogen species.
    Kumar S; Rhim WK; Lim DK; Nam JM
    ACS Nano; 2013 Mar; 7(3):2221-30. PubMed ID: 23448129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical biosensors for on-chip detection of oxidative stress from cells.
    Enomoto J; Matharu Z; Revzin A
    Methods Enzymol; 2013; 526():107-21. PubMed ID: 23791096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species.
    Panday S; Talreja R; Kavdia M
    Microvasc Res; 2020 Sep; 131():104010. PubMed ID: 32335268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends in electrochemical biosensors of superoxide dismutases.
    Balamurugan M; Santharaman P; Madasamy T; Rajesh S; Sethy NK; Bhargava K; Kotamraju S; Karunakaran C
    Biosens Bioelectron; 2018 Sep; 116():89-99. PubMed ID: 29860091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Recognition Molecules and Tailoring Functional Surfaces for In Vivo Monitoring of Small Molecules in the Brain.
    Zhang L; Tian Y
    Acc Chem Res; 2018 Mar; 51(3):688-696. PubMed ID: 29485847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.