These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
616 related articles for article (PubMed ID: 28394441)
61. Two-Dimensional Cobalt-/Nickel-Based Oxide Nanosheets for High-Performance Sodium and Lithium Storage. Zhang D; Sun W; Chen Z; Zhang Y; Luo W; Jiang Y; Dou SX Chemistry; 2016 Dec; 22(50):18060-18065. PubMed ID: 27714876 [TBL] [Abstract][Full Text] [Related]
62. Recent advances in cathode materials for rechargeable lithium-sulfur batteries. Li F; Liu Q; Hu J; Feng Y; He P; Ma J Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082 [TBL] [Abstract][Full Text] [Related]
63. Utilization of 2D materials in aqueous zinc ion batteries for safe energy storage devices. Kim JS; Heo SW; Lee SY; Lim JM; Choi S; Kim SW; Mane VJ; Kim C; Park H; Noh YT; Choi S; van der Laan T; Ostrikov KK; Park SJ; Doo SG; Han Seo D Nanoscale; 2023 Nov; 15(43):17270-17312. PubMed ID: 37869772 [TBL] [Abstract][Full Text] [Related]
64. Advances and Challenges in Metal Sulfides/Selenides for Next-Generation Rechargeable Sodium-Ion Batteries. Hu Z; Liu Q; Chou SL; Dou SX Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28643429 [TBL] [Abstract][Full Text] [Related]
65. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries. Xu J; Dou Y; Wei Z; Ma J; Deng Y; Li Y; Liu H; Dou S Adv Sci (Weinh); 2017 Oct; 4(10):1700146. PubMed ID: 29051856 [TBL] [Abstract][Full Text] [Related]
66. Robust Lithium Metal Anodes Realized by Lithiophilic 3D Porous Current Collectors for Constructing High-Energy Lithium-Sulfur Batteries. Pei F; Fu A; Ye W; Peng J; Fang X; Wang MS; Zheng N ACS Nano; 2019 Jul; 13(7):8337-8346. PubMed ID: 31287646 [TBL] [Abstract][Full Text] [Related]
67. Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries. Gao J; Abruña HD J Phys Chem Lett; 2014 Mar; 5(5):882-5. PubMed ID: 26274082 [TBL] [Abstract][Full Text] [Related]
68. Low-Dimensional Vanadium-Based High-Voltage Cathode Materials for Promising Rechargeable Alkali-Ion Batteries. Ni W Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591436 [TBL] [Abstract][Full Text] [Related]
69. An Overview on the Development of Electrochemical Capacitors and Batteries - part II. Martins VL; Neves HR; Monje IE; Leite MM; Oliveira PFM; Antoniassi RM; Chauque S; Morais WG; Melo EC; Obana TT; Souza BL; Torresi RM An Acad Bras Cienc; 2020; 92(2):e20200800. PubMed ID: 32638868 [TBL] [Abstract][Full Text] [Related]
70. 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries. Zhao Q; Zhu Q; Miao J; Zhang P; Xu B Nanoscale; 2019 Apr; 11(17):8442-8448. PubMed ID: 30985850 [TBL] [Abstract][Full Text] [Related]
71. High-Safety and High-Energy-Density Lithium Metal Batteries in a Novel Ionic-Liquid Electrolyte. Sun H; Zhu G; Zhu Y; Lin MC; Chen H; Li YY; Hung WH; Zhou B; Wang X; Bai Y; Gu M; Huang CL; Tai HC; Xu X; Angell M; Shyue JJ; Dai H Adv Mater; 2020 Jul; 32(26):e2001741. PubMed ID: 32449260 [TBL] [Abstract][Full Text] [Related]
72. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Fang X; Peng H Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342 [TBL] [Abstract][Full Text] [Related]
73. Origin of Excellent Charge Storage Properties of Defective Tin Disulphide in Magnesium/Lithium-Ion Hybrid Batteries. Fan X; Tebyetekerwa M; Wu Y; Gaddam RR; Zhao XS Nanomicro Lett; 2022 Aug; 14(1):177. PubMed ID: 36001176 [TBL] [Abstract][Full Text] [Related]
74. Unusual pseudocapacitive lithium-ion storage on defective Co Avvaru VS; Vincent M; Fernandez IJ; Hinder SJ; Etacheri V Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 35158338 [TBL] [Abstract][Full Text] [Related]
75. Oxygen-Based Anion Redox for Lithium Batteries. Li M; Bi X; Amine K; Lu J Acc Chem Res; 2020 Aug; 53(8):1436-1444. PubMed ID: 32634307 [TBL] [Abstract][Full Text] [Related]
76. Recent advances of two-dimensional materials-based heterostructures for rechargeable batteries. Xue Y; Xu T; Wang C; Fu L iScience; 2024 Aug; 27(8):110392. PubMed ID: 39129831 [TBL] [Abstract][Full Text] [Related]
77. Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. Hoang Huy VP; Ahn YN; Hur J Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34201136 [TBL] [Abstract][Full Text] [Related]
78. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Zhang H; Eshetu GG; Judez X; Li C; Rodriguez-Martínez LM; Armand M Angew Chem Int Ed Engl; 2018 Nov; 57(46):15002-15027. PubMed ID: 29442418 [TBL] [Abstract][Full Text] [Related]
79. Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite Solar Cells. Liu C; Yuan J; Masse R; Jia X; Bi W; Neale Z; Shen T; Xu M; Tian M; Zheng J; Tian J; Cao G Adv Mater; 2021 Jun; 33(22):e1905245. PubMed ID: 31975460 [TBL] [Abstract][Full Text] [Related]
80. Emerging of Heterostructure Materials in Energy Storage: A Review. Li Y; Zhang J; Chen Q; Xia X; Chen M Adv Mater; 2021 Jul; 33(27):e2100855. PubMed ID: 34033149 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]