These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28394607)

  • 21. Dimensions and the profile of surface nanobubbles: tip-nanobubble interactions and nanobubble deformation in atomic force microscopy.
    Walczyk W; Schönherr H
    Langmuir; 2014 Oct; 30(40):11955-65. PubMed ID: 25222759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the interaction between AFM tips and surface nanobubbles.
    Walczyk W; Schönherr H
    Langmuir; 2014 Jun; 30(24):7112-26. PubMed ID: 24856074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interfacial nanobubbles on atomically flat substrates with different hydrophobicities.
    Wang X; Zhao B; Ma W; Wang Y; Gao X; Tai R; Zhou X; Zhang L
    Chemphyschem; 2015 Apr; 16(5):1003-7. PubMed ID: 25694234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of ultrasonication on the flotation of fine graphite particles: Nanobubbles or not?
    Li C; Li X; Xu M; Zhang H
    Ultrason Sonochem; 2020 Dec; 69():105243. PubMed ID: 32623346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface rearrangement of water-immersed hydrophobic solids by gaseous nanobubbles.
    Tarábková H; Bastl Z; Janda P
    Langmuir; 2014 Dec; 30(48):14522-31. PubMed ID: 25405849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing Internal Pressures and Long-Term Stability of Nanobubbles in Water.
    Shi X; Xue S; Marhaba T; Zhang W
    Langmuir; 2021 Feb; 37(7):2514-2522. PubMed ID: 33538170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the shape of surface nanobubbles.
    Borkent BM; de Beer S; Mugele F; Lohse D
    Langmuir; 2010 Jan; 26(1):260-8. PubMed ID: 20038172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite.
    Huc V; Bendiab N; Rosman N; Ebbesen T; Delacour C; Bouchiat V
    Nanotechnology; 2008 Nov; 19(45):455601. PubMed ID: 21832778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Nanobubbles on the Flotation Performance of Oxidized Coal.
    Chang G; Xing Y; Zhang F; Yang Z; Liu X; Gui X
    ACS Omega; 2020 Aug; 5(32):20283-20290. PubMed ID: 32832781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale multiple gaseous layers on a hydrophobic surface.
    Zhang L; Zhang X; Fan C; Zhang Y; Hu J
    Langmuir; 2009 Aug; 25(16):8860-4. PubMed ID: 19601567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: in situ atomic force microscopy and nanolithography study.
    Kolivoška V; Gál M; Hromadová M; Lachmanová S; Tarábková H; Janda P; Pospíšil L; Turoňová AM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():213-9. PubMed ID: 22341519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gas micronuclei that underlie decompression bubbles and decompression sickness have not been identified.
    Doolette DJ
    Diving Hyperb Med; 2019 Mar; 49(1):64. PubMed ID: 30856670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscale pinning effect evaluated from deformed nanobubbles.
    Teshima H; Nishiyama T; Takahashi K
    J Chem Phys; 2017 Jan; 146(1):014708. PubMed ID: 28063422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation, dissolution and properties of surface nanobubbles.
    Che Z; Theodorakis PE
    J Colloid Interface Sci; 2017 Feb; 487():123-129. PubMed ID: 27764652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Force Spectroscopy Revealed a High-Gas-Density State near the Graphite Substrate inside Surface Nanobubbles.
    Wang S; Zhou L; Wang X; Wang C; Dong Y; Zhang Y; Gao Y; Zhang L; Hu J
    Langmuir; 2019 Feb; 35(7):2498-2505. PubMed ID: 30645126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanobubbles at Hydrophilic Particle-Water Interfaces.
    Pan G; He G; Zhang M; Zhou Q; Tyliszczak T; Tai R; Guo J; Bi L; Wang L; Zhang H
    Langmuir; 2016 Nov; 32(43):11133-11137. PubMed ID: 27180638
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metastable nanobubbles at the solid-liquid interface due to contact angle hysteresis.
    Nishiyama T; Yamada Y; Ikuta T; Takahashi K; Takata Y
    Langmuir; 2015 Jan; 31(3):982-6. PubMed ID: 25540821
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanobubble formation on a warmer substrate.
    Xu C; Peng S; Qiao GG; Gutowski V; Lohse D; Zhang X
    Soft Matter; 2014 Oct; 10(39):7857-64. PubMed ID: 25156822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomistic study of the solid state inside graphene nanobubbles.
    Iakovlev E; Zhilyaev P; Akhatov I
    Sci Rep; 2017 Dec; 7(1):17906. PubMed ID: 29263360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrodynamic effects of the tip movement on surface nanobubbles: a combined tapping mode, lift mode and force volume mode AFM study.
    Walczyk W; Hain N; Schönherr H
    Soft Matter; 2014 Aug; 10(32):5945-54. PubMed ID: 24988375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.