BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 2839523)

  • 1. Differential effects of mutations in three domains on folding, quaternary structure, and intracellular transport of vesicular stomatitis virus G protein.
    Doms RW; Ruusala A; Machamer C; Helenius J; Helenius A; Rose JK
    J Cell Biol; 1988 Jul; 107(1):89-99. PubMed ID: 2839523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers.
    Doms RW; Keller DS; Helenius A; Balch WE
    J Cell Biol; 1987 Nov; 105(5):1957-69. PubMed ID: 2824524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of altered cytoplasmic domains on transport of the vesicular stomatitis virus glycoprotein are transferable to other proteins.
    Guan JL; Ruusala A; Cao H; Rose JK
    Mol Cell Biol; 1988 Jul; 8(7):2869-74. PubMed ID: 2841589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posttranslational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes.
    de Silva A; Braakman I; Helenius A
    J Cell Biol; 1993 Feb; 120(3):647-55. PubMed ID: 8381122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy chain binding protein recognizes incompletely disulfide-bonded forms of vesicular stomatitis virus G protein.
    Machamer CE; Doms RW; Bole DG; Helenius A; Rose JK
    J Biol Chem; 1990 Apr; 265(12):6879-83. PubMed ID: 2157712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vesicular stomatitis virus G proteins with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonding.
    Machamer CE; Rose JK
    J Biol Chem; 1988 Apr; 263(12):5955-60. PubMed ID: 2833524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic equilibrium between vesicular stomatitis virus glycoprotein monomers and trimers in the Golgi and at the cell surface.
    Zagouras P; Rose JK
    J Virol; 1993 Dec; 67(12):7533-8. PubMed ID: 8230472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic domains of cellular and viral integral membrane proteins substitute for the cytoplasmic domain of the vesicular stomatitis virus glycoprotein in transport to the plasma membrane.
    Puddington L; Machamer CE; Rose JK
    J Cell Biol; 1986 Jun; 102(6):2147-57. PubMed ID: 3011809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligomerization of glycolipid-anchored and soluble forms of the vesicular stomatitis virus glycoprotein.
    Crise B; Ruusala A; Zagouras P; Shaw A; Rose JK
    J Virol; 1989 Dec; 63(12):5328-33. PubMed ID: 2555557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation and reassociation of oligomeric viral glycoprotein subunits in the endoplasmic reticulum.
    Zagouras P; Ruusala A; Rose JK
    J Virol; 1991 Apr; 65(4):1976-84. PubMed ID: 1848313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein.
    Whitt MA; Buonocore L; Prehaud C; Rose JK
    Virology; 1991 Dec; 185(2):681-8. PubMed ID: 1660200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of polymannose oligosaccharides from vesicular stomatitis virus G protein during endoplasmic reticulum-associated degradation.
    Spiro MJ; Spiro RG
    Glycobiology; 2001 Oct; 11(10):803-11. PubMed ID: 11588156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient export of the vesicular stomatitis virus G protein from the endoplasmic reticulum requires a signal in the cytoplasmic tail that includes both tyrosine-based and di-acidic motifs.
    Sevier CS; Weisz OA; Davis M; Machamer CE
    Mol Biol Cell; 2000 Jan; 11(1):13-22. PubMed ID: 10637287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains.
    Li Y; Drone C; Sat E; Ghosh HP
    J Virol; 1993 Jul; 67(7):4070-7. PubMed ID: 8389917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding, unfolding, and refolding of the vesicular stomatitis virus glycoprotein.
    Mathieu ME; Grigera PR; Helenius A; Wagner RR
    Biochemistry; 1996 Apr; 35(13):4084-93. PubMed ID: 8672443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basolateral expression of a chimeric protein in which the transmembrane and cytoplasmic domains of vesicular stomatitis virus G protein have been replaced by those of the influenza virus hemagglutinin.
    McQueen NL; Nayak DP; Stephens EB; Compans RW
    J Biol Chem; 1987 Nov; 262(33):16233-40. PubMed ID: 2824483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mutations in three domains of the vesicular stomatitis viral glycoprotein on its lateral diffusion in the plasma membrane.
    Scullion BF; Hou Y; Puddington L; Rose JK; Jacobson K
    J Cell Biol; 1987 Jul; 105(1):69-75. PubMed ID: 3038931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface.
    Kreis TE; Lodish HF
    Cell; 1986 Sep; 46(6):929-37. PubMed ID: 3019557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular transport of VSV G protein occurs in cells lacking a nuclear envelope.
    Hanover JA
    Biochem Biophys Res Commun; 1988 Apr; 152(1):469-76. PubMed ID: 2833898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of intracellular transport and sorting of lysosomal membrane and plasma membrane proteins.
    Green SA; Zimmer KP; Griffiths G; Mellman I
    J Cell Biol; 1987 Sep; 105(3):1227-40. PubMed ID: 2821012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.