BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28396268)

  • 21. Cholesterol, synaptic function and Alzheimer's disease.
    Koudinov AR; Koudinova NV
    Pharmacopsychiatry; 2003 Sep; 36 Suppl 2():S107-12. PubMed ID: 14574623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic low-dose-rate ionising radiation affects the hippocampal phosphoproteome in the ApoE-/- Alzheimer's mouse model.
    Kempf SJ; Janik D; Barjaktarovic Z; Braga-Tanaka I; Tanaka S; Neff F; Saran A; Larsen MR; Tapio S
    Oncotarget; 2016 Nov; 7(44):71817-71832. PubMed ID: 27708245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting post-translational modifications on tau as a therapeutic strategy for Alzheimer's disease.
    Marcus JN; Schachter J
    J Neurogenet; 2011 Dec; 25(4):127-33. PubMed ID: 22091726
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptic Plasticity, Dementia and Alzheimer Disease.
    Skaper SD; Facci L; Zusso M; Giusti P
    CNS Neurol Disord Drug Targets; 2017; 16(3):220-233. PubMed ID: 28088900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TiSH--a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC.
    Engholm-Keller K; Birck P; Størling J; Pociot F; Mandrup-Poulsen T; Larsen MR
    J Proteomics; 2012 Oct; 75(18):5749-61. PubMed ID: 22906719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathological Role of Peptidyl-Prolyl Isomerase Pin1 in the Disruption of Synaptic Plasticity in Alzheimer's Disease.
    Xu L; Ren Z; Chow FE; Tsai R; Liu T; Rizzolio F; Boffo S; Xu Y; Huang S; Lippa CF; Gong Y
    Neural Plast; 2017; 2017():3270725. PubMed ID: 28458925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomic analysis of glial fibrillary acidic protein in Alzheimer's disease and aging brain.
    Korolainen MA; Auriola S; Nyman TA; Alafuzoff I; Pirttilä T
    Neurobiol Dis; 2005 Dec; 20(3):858-70. PubMed ID: 15979880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Potential of Proteomics in Understanding Neurodegeneration.
    Pal R; Larsen JP; Moller SG
    Int Rev Neurobiol; 2015; 121():25-58. PubMed ID: 26315761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive Quantitative Profiling of Tau and Phosphorylated Tau Peptides in Cerebrospinal Fluid by Mass Spectrometry Provides New Biomarker Candidates.
    Russell CL; Mitra V; Hansson K; Blennow K; Gobom J; Zetterberg H; Hiltunen M; Ward M; Pike I
    J Alzheimers Dis; 2017; 55(1):303-313. PubMed ID: 27636850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of serine/threonine protein phosphatase in Alzheimer's disease.
    Tian Q; Wang J
    Neurosignals; 2002; 11(5):262-9. PubMed ID: 12566927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases.
    Gu L; Robinson RA
    Proteomics Clin Appl; 2016 Dec; 10(12):1159-1177. PubMed ID: 27666938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuroproteomics tools in clinical practice.
    Shevchenko G; Konzer A; Musunuri S; Bergquist J
    Biochim Biophys Acta; 2015 Jul; 1854(7):705-17. PubMed ID: 25680928
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research.
    Chan CY; Gritsenko MA; Smith RD; Qian WJ
    Expert Rev Proteomics; 2016; 13(4):421-33. PubMed ID: 26960075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-depth mapping of the mouse brain N-glycoproteome reveals widespread N-glycosylation of diverse brain proteins.
    Fang P; Wang XJ; Xue Y; Liu MQ; Zeng WF; Zhang Y; Zhang L; Gao X; Yan GQ; Yao J; Shen HL; Yang PY
    Oncotarget; 2016 Jun; 7(25):38796-38809. PubMed ID: 27259237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging roles of N-linked glycosylation in brain physiology and disorders.
    Conroy LR; Hawkinson TR; Young LEA; Gentry MS; Sun RC
    Trends Endocrinol Metab; 2021 Dec; 32(12):980-993. PubMed ID: 34756776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of protein glycosylation in Alzheimer disease.
    Schedin-Weiss S; Winblad B; Tjernberg LO
    FEBS J; 2014 Jan; 281(1):46-62. PubMed ID: 24279329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Large-scale analysis of posttranslational modifications in the hippocampus of patients with Alzheimer's disease using pI shift and label-free quantification without enrichment.
    Kang T; Kim JH; Hong I; Park NH; Heinsen H; Lee JY; Ravid R; Ferrer I; Yoo JS; Kwon KH; Park YM
    Anal Bioanal Chem; 2014 Sep; 406(22):5433-46. PubMed ID: 25120180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Use of Titanium Dioxide for Selective Enrichment of Phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():135-46. PubMed ID: 26584923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.