BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 28396292)

  • 1. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Soft Matter; 2019 Feb; 15(8):1721-1729. PubMed ID: 30657157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Actin Organization on the Stiffness of Living Breast Cancer Cells Revealed by Peak-Force Modulation Atomic Force Microscopy.
    Calzado-Martín A; Encinar M; Tamayo J; Calleja M; San Paulo A
    ACS Nano; 2016 Mar; 10(3):3365-74. PubMed ID: 26901115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.
    Mansara PP; Deshpande RA; Vaidya MM; Kaul-Ghanekar R
    PLoS One; 2015; 10(9):e0136542. PubMed ID: 26325577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation of the viscoelastic properties and the actin cytoskeletal structure of triple negative breast cancer cells.
    Hu J; Zhou Y; Obayemi JD; Du J; Soboyejo WO
    J Mech Behav Biomed Mater; 2018 Oct; 86():1-13. PubMed ID: 29913305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of the cell-surface roughness and viscoelasticity for breast cancer cells discrimination using atomic force microscopy.
    Wang Y; Xu C; Jiang N; Zheng L; Zeng J; Qiu C; Yang H; Xie S
    Scanning; 2016 Nov; 38(6):558-563. PubMed ID: 26750438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Breast Cancer Aggressiveness by Cell Mechanics.
    Zbiral B; Weber A; Vivanco MD; Toca-Herrera JL
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale.
    Hecht FM; Rheinlaender J; Schierbaum N; Goldmann WH; Fabry B; Schäffer TE
    Soft Matter; 2015 Jun; 11(23):4584-4591. PubMed ID: 25891371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An investigation of the viscoelastic behavior of MCF-10A and MCF-7 cells.
    Heydarian A; Milani D; Moein Fatemi SM
    Biochem Biophys Res Commun; 2020 Aug; 529(2):432-436. PubMed ID: 32703447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-β induces changes in breast cancer cell deformability.
    Kulkarni AH; Chatterjee A; Kondaiah P; Gundiah N
    Phys Biol; 2018 Aug; 15(6):065005. PubMed ID: 29745937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy.
    Corbin EA; Kong F; Lim CT; King WP; Bashir R
    Lab Chip; 2015 Feb; 15(3):839-47. PubMed ID: 25473785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFAP-110 is required for actin stress fiber formation and cell adhesion in MDA-MB-231 breast cancer cells.
    Dorfleutner A; Stehlik C; Zhang J; Gallick GE; Flynn DC
    J Cell Physiol; 2007 Dec; 213(3):740-9. PubMed ID: 17520695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of energy metabolism on the mechanical properties of breast cancer cells.
    Yubero ML; Kosaka PM; San Paulo Á; Malumbres M; Calleja M; Tamayo J
    Commun Biol; 2020 Oct; 3(1):590. PubMed ID: 33082491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments.
    Brückner BR; Nöding H; Janshoff A
    Biophys J; 2017 Feb; 112(4):724-735. PubMed ID: 28256232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy studies on cellular elastic and viscoelastic properties.
    Li M; Liu L; Xi N; Wang Y
    Sci China Life Sci; 2018 Jan; 61(1):57-67. PubMed ID: 28667516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231.
    Abramczyk H; Surmacki J; Kopeć M; Olejnik AK; Kaufman-Szymczyk A; Fabianowska-Majewska K
    Analyst; 2016 Oct; 141(19):5646-58. PubMed ID: 27460599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of confluency on cell mechanical properties.
    Efremov YM; Dokrunova AA; Bagrov DV; Kudryashova KS; Sokolova OS; Shaitan KV
    J Biomech; 2013 Apr; 46(6):1081-7. PubMed ID: 23453395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures.
    Nikkhah M; Strobl JS; De Vita R; Agah M
    Biomaterials; 2010 Jun; 31(16):4552-61. PubMed ID: 20207413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM indentation study of breast cancer cells.
    Li QS; Lee GY; Ong CN; Lim CT
    Biochem Biophys Res Commun; 2008 Oct; 374(4):609-13. PubMed ID: 18656442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.