BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28396461)

  • 1. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein.
    Deeg CM; Hassan E; Mutz P; Rheinemann L; Götz V; Magar L; Schilling M; Kallfass C; Nürnberger C; Soubies S; Kochs G; Haller O; Schwemmle M; Staeheli P
    J Exp Med; 2017 May; 214(5):1239-1248. PubMed ID: 28396461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eurasian Avian-Like Swine Influenza A Viruses Escape Human MxA Restriction through Distinct Mutations in Their Nucleoprotein.
    Dornfeld D; Petric PP; Hassan E; Zell R; Schwemmle M
    J Virol; 2019 Jan; 93(2):. PubMed ID: 30355693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA.
    Riegger D; Hai R; Dornfeld D; Mänz B; Leyva-Grado V; Sánchez-Aparicio MT; Albrecht RA; Palese P; Haller O; Schwemmle M; García-Sastre A; Kochs G; Schmolke M
    J Virol; 2015 Feb; 89(4):2241-52. PubMed ID: 25505067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human MxA is a potent interspecies barrier for the novel bat-derived influenza A-like virus H18N11.
    Ciminski K; Pulvermüller J; Adam J; Schwemmle M
    Emerg Microbes Infect; 2019; 8(1):556-563. PubMed ID: 30945621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein.
    Mänz B; Dornfeld D; Götz V; Zell R; Zimmermann P; Haller O; Kochs G; Schwemmle M
    PLoS Pathog; 2013 Mar; 9(3):e1003279. PubMed ID: 23555271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influenza Virus Susceptibility of Wild-Derived CAST/EiJ Mice Results from Two Amino Acid Changes in the MX1 Restriction Factor.
    Nürnberger C; Zimmermann V; Gerhardt M; Staeheli P
    J Virol; 2016 Dec; 90(23):10682-10692. PubMed ID: 27654285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA.
    Ashenberg O; Padmakumar J; Doud MB; Bloom JD
    PLoS Pathog; 2017 Mar; 13(3):e1006288. PubMed ID: 28346537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mx genes: host determinants controlling influenza virus infection and trans-species transmission.
    Haller O; Kochs G
    Hum Genet; 2020 Jun; 139(6-7):695-705. PubMed ID: 31773252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The viral nucleoprotein determines Mx sensitivity of influenza A viruses.
    Zimmermann P; Mänz B; Haller O; Schwemmle M; Kochs G
    J Virol; 2011 Aug; 85(16):8133-40. PubMed ID: 21680506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Polymerase Activity of Zoonotic H7N9 Allows Partial Escape from MxA.
    Petric PP; King J; Graf L; Pohlmann A; Beer M; Schwemmle M
    Viruses; 2022 Oct; 14(11):. PubMed ID: 36366429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Comparison of Mx1 from Two Different Mouse Species Reveals the Involvement of Loop L4 in the Antiviral Activity against Influenza A Viruses.
    Verhelst J; Spitaels J; Nürnberger C; De Vlieger D; Ysenbaert T; Staeheli P; Fiers W; Saelens X
    J Virol; 2015 Nov; 89(21):10879-90. PubMed ID: 26292322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tick-transmitted thogotovirus gains high virulence by a single MxA escape mutation in the viral nucleoprotein.
    Fuchs J; Oschwald A; Graf L; Kochs G
    PLoS Pathog; 2020 Nov; 16(11):e1009038. PubMed ID: 33196685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase.
    Dittmann J; Stertz S; Grimm D; Steel J; García-Sastre A; Haller O; Kochs G
    J Virol; 2008 Apr; 82(7):3624-31. PubMed ID: 18199636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import.
    Götz V; Magar L; Dornfeld D; Giese S; Pohlmann A; Höper D; Kong BW; Jans DA; Beer M; Haller O; Schwemmle M
    Sci Rep; 2016 Mar; 6():23138. PubMed ID: 26988202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive amino acid substitutions enhance the virulence of an H7N7 avian influenza virus isolated from wild waterfowl in mice.
    Chen Q; Yu Z; Sun W; Li X; Chai H; Gao X; Guo J; Zhang K; Feng N; Zheng X; Wang H; Zhao Y; Qin C; Huang G; Yang S; Qian J; Gao Y; Xia X; Wang T; Hua Y
    Vet Microbiol; 2015 May; 177(1-2):18-24. PubMed ID: 25769645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses.
    Belser JA; Szretter KJ; Katz JM; Tumpey TM
    Adv Virus Res; 2009; 73():55-97. PubMed ID: 19695381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small molecule inhibitors of the c-Jun N-terminal kinase (JNK) possess antiviral activity against highly pathogenic avian and human pandemic influenza A viruses.
    Nacken W; Ehrhardt C; Ludwig S
    Biol Chem; 2012 May; 393(6):525-34. PubMed ID: 22628315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Eurasian H7N7/PR8 high growth reassortant virus for clinical evaluation as an inactivated pandemic influenza vaccine.
    Jadhao SJ; Achenbach J; Swayne DE; Donis R; Cox N; Matsuoka Y
    Vaccine; 2008 Mar; 26(14):1742-50. PubMed ID: 18336962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host.
    Gabriel G; Dauber B; Wolff T; Planz O; Klenk HD; Stech J
    Proc Natl Acad Sci U S A; 2005 Dec; 102(51):18590-5. PubMed ID: 16339318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective role of interferon-induced Mx GTPases against influenza viruses.
    Haller O; Staeheli P; Kochs G
    Rev Sci Tech; 2009 Apr; 28(1):219-31. PubMed ID: 19618628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.