BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 28396559)

  • 1. An mRNA Capping Enzyme Targets FACT to the Active Gene To Enhance the Engagement of RNA Polymerase II into Transcriptional Elongation.
    Sen R; Kaja A; Ferdoush J; Lahudkar S; Barman P; Bhaumik SR
    Mol Cell Biol; 2017 Jul; 37(13):. PubMed ID: 28396559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation-Dependent Recruitment of the FACT Complex and Its Role in Regulating Pol II Occupancy Genome-Wide in
    Pathak R; Singh P; Ananthakrishnan S; Adamczyk S; Schimmel O; Govind CK
    Genetics; 2018 Jul; 209(3):743-756. PubMed ID: 29695490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel role for Cet1p mRNA 5'-triphosphatase in promoter proximal accumulation of RNA polymerase II in Saccharomyces cerevisiase.
    Lahudkar S; Durairaj G; Uprety B; Bhaumik SR
    Genetics; 2014 Jan; 196(1):161-76. PubMed ID: 24172134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cap completion and C-terminal repeat domain kinase recruitment underlie the initiation-elongation transition of RNA polymerase II.
    Lidschreiber M; Leike K; Cramer P
    Mol Cell Biol; 2013 Oct; 33(19):3805-16. PubMed ID: 23878398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo.
    Mason PB; Struhl K
    Mol Cell Biol; 2003 Nov; 23(22):8323-33. PubMed ID: 14585989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configuration.
    Begley V; Jordán-Pla A; Peñate X; Garrido-Godino AI; Challal D; Cuevas-Bermúdez A; Mitjavila A; Barucco M; Gutiérrez G; Singh A; Alepuz P; Navarro F; Libri D; Pérez-Ortín JE; Chávez S
    RNA Biol; 2021 Sep; 18(9):1310-1323. PubMed ID: 33138675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FACT maintains chromatin architecture and thereby stimulates RNA polymerase II pausing during transcription in vivo.
    Žumer K; Ochmann M; Aljahani A; Zheenbekova A; Devadas A; Maier KC; Rus P; Neef U; Oudelaar AM; Cramer P
    Mol Cell; 2024 Jun; 84(11):2053-2069.e9. PubMed ID: 38810649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide regulation of Pol II, FACT, and Spt6 occupancies by RSC in Saccharomyces cerevisiae.
    Biernat E; Verma M; Govind CK
    Gene; 2024 Jan; 893():147959. PubMed ID: 37923091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin regulates alternative polyadenylation via the RNA polymerase II elongation rate.
    Geisberg JV; Moqtaderi Z; Struhl K
    Proc Natl Acad Sci U S A; 2024 May; 121(21):e2405827121. PubMed ID: 38748572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sir2 silences gene transcription by targeting the transition between RNA polymerase II initiation and elongation.
    Gao L; Gross DS
    Mol Cell Biol; 2008 Jun; 28(12):3979-94. PubMed ID: 18391020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulon-specific control of transcription elongation across the yeast genome.
    Pelechano V; Jimeno-González S; Rodríguez-Gil A; García-Martínez J; Pérez-Ortín JE; Chávez S
    PLoS Genet; 2009 Aug; 5(8):e1000614. PubMed ID: 19696888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core promoter activity contributes to chromatin-based regulation of internal cryptic promoters.
    Lee BB; Woo H; Lee MK; Youn S; Lee S; Roe JS; Lee SY; Kim T
    Nucleic Acids Res; 2021 Aug; 49(14):8097-8109. PubMed ID: 34320189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae.
    Cui P; Jin H; Vutukuru MR; Kaplan CD
    G3 (Bethesda); 2016 Aug; 6(8):2489-504. PubMed ID: 27261007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo.
    Takase Y; Takagi T; Komarnitsky PB; Buratowski S
    Mol Cell Biol; 2000 Dec; 20(24):9307-16. PubMed ID: 11094081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation.
    Fujiwara R; Damodaren N; Wilusz JE; Murakami K
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22573-22582. PubMed ID: 31591205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of S. cerevisiae Rpb4 in subset of pathways related to transcription elongation.
    Deshpande SM; Sadhale PP; Vijayraghavan U
    Gene; 2014 Jul; 545(1):126-31. PubMed ID: 24780862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo.
    Guglielmi B; Soutourina J; Esnault C; Werner M
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16062-7. PubMed ID: 17901206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub1 associates with Spt5 and influences RNA polymerase II transcription elongation rate.
    García A; Collin A; Calvo O
    Mol Biol Cell; 2012 Nov; 23(21):4297-312. PubMed ID: 22973055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keys to open chromatin for transcription activation: FACT and Asf1.
    Krebs A; Tora L
    Mol Cell; 2009 May; 34(4):397-9. PubMed ID: 19481517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.