These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28396629)

  • 1. Effects of Changing Body Weight Distribution on Mediolateral Stability Control during Gait Initiation.
    Caderby T; Yiou E; Peyrot N; de Viviés X; Bonazzi B; Dalleau G
    Front Hum Neurosci; 2017; 11():127. PubMed ID: 28396629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of gait speed on the control of mediolateral dynamic stability during gait initiation.
    Caderby T; Yiou E; Peyrot N; Begon M; Dalleau G
    J Biomech; 2014 Jan; 47(2):417-23. PubMed ID: 24290175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obesity-related alterations in anticipatory postural mechanisms associated with gait initiation.
    Caderby T; Caron N; Verkindt C; Bonazzi B; Dalleau G; Peyrot N
    Exp Brain Res; 2020 Nov; 238(11):2557-2567. PubMed ID: 32876708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticipatory Postural Control of Stability during Gait Initiation Over Obstacles of Different Height and Distance Made Under Reaction-Time and Self-Initiated Instructions.
    Yiou E; Artico R; Teyssedre CA; Labaune O; Fourcade P
    Front Hum Neurosci; 2016; 10():449. PubMed ID: 27656138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigid Ankle Foot Orthosis Deteriorates Mediolateral Balance Control and Vertical Braking during Gait Initiation.
    Delafontaine A; Gagey O; Colnaghi S; Do MC; Honeine JL
    Front Hum Neurosci; 2017; 11():214. PubMed ID: 28503144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Neuro-Mechanical Processes That Underlie Goal-Directed Medio-Lateral APA during Gait Initiation.
    Honeine JL; Schieppati M; Crisafulli O; Do MC
    Front Hum Neurosci; 2016; 10():445. PubMed ID: 27642280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of changing the initial horizontal location of the center of mass on the anticipatory postural adjustments and task performance associated with step initiation.
    Azuma T; Ito T; Yamashita N
    Gait Posture; 2007 Oct; 26(4):526-31. PubMed ID: 17194591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait initiation differences between overweight and normal weight individuals.
    Qu X; Hu X; Tao D
    Ergonomics; 2021 Aug; 64(8):995-1001. PubMed ID: 33663344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural control processes during standing and step initiation in autism spectrum disorder.
    Bojanek EK; Wang Z; White SP; Mosconi MW
    J Neurodev Disord; 2020 Jan; 12(1):1. PubMed ID: 31906846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processes of anticipatory postural adjustment and step movement of gait initiation.
    Mizusawa H; Jono Y; Iwata Y; Kinoshita A; Hiraoka K
    Hum Mov Sci; 2017 Apr; 52():1-16. PubMed ID: 28088660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional Control Mechanisms in Multidirectional Step Initiating Tasks.
    Inaba Y; Suzuki T; Yoshioka S; Fukashiro S
    Front Hum Neurosci; 2020; 14():178. PubMed ID: 32792926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of postural responses and step initiation: evidence for goal-directed postural interactions.
    Burleigh AL; Horak FB; Malouin F
    J Neurophysiol; 1994 Dec; 72(6):2892-902. PubMed ID: 7897497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of temporal constraints on medio-lateral stability when negotiating obstacles.
    Nakano W; Fukaya T; Kanai Y; Akizuki K; Ohashi Y
    Gait Posture; 2015 Jul; 42(2):158-64. PubMed ID: 26028527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of temporal pressure constraint on the biomechanical organization of gait initiation made with or without an obstacle to clear.
    Yiou E; Fourcade P; Artico R; Caderby T
    Exp Brain Res; 2016 Jun; 234(6):1363-75. PubMed ID: 25990822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of mediolateral stability during rapid step initiation with preferred and non-preferred leg: is it symmetrical?
    Yiou E; Do MC
    Gait Posture; 2010 May; 32(1):145-7. PubMed ID: 20444608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute Effects of Whole-Body Vibration on the Postural Organization of Gait Initiation in Young Adults and Elderly: A Randomized Sham Intervention Study.
    Delafontaine A; Vialleron T; Fischer M; Laffaye G; Chèze L; Artico R; Genêt F; Fourcade PC; Yiou E
    Front Neurol; 2019; 10():1023. PubMed ID: 31616369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does an additional load modify the Anticipatory Postural Adjustments in gait initiation?
    Caderby T; Dalleau G; Leroyer P; Bonazzi B; Chane-Teng D; Do MC
    Gait Posture; 2013 Jan; 37(1):144-6. PubMed ID: 22796245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in mediolateral dynamic stability during gait initiation according to whether the non-paretic or paretic leg is used as the leading limb.
    Osada Y; Motojima N; Kobayashi Y; Yamamoto S
    PLoS One; 2022; 17(4):e0267577. PubMed ID: 35476702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability in the Center of Mass State During Initiation of Accurate Forward Step Aimed at Targets of Different Sizes.
    Yamada H; Shinya M
    Front Sports Act Living; 2021; 3():691307. PubMed ID: 34490423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of short-term changes in body mass distribution on feed-forward postural control.
    Li X; Aruin AS
    J Electromyogr Kinesiol; 2009 Oct; 19(5):931-41. PubMed ID: 18614379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.