These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28396708)

  • 1. Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport networks.
    Koo HJ; Velev OD
    Biomicrofluidics; 2017 Mar; 11(2):024104. PubMed ID: 28396708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An optimized procedure to develop a 3-dimensional microfluidic hydrogel with parallel transport networks.
    Jafarkhani M; Salehi Z; Shokrgozar MA; Mashayekhan S
    Int J Numer Method Biomed Eng; 2019 Jan; 35(1):e3154. PubMed ID: 30216704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces.
    Shay T; Dickey MD; Velev OD
    Lab Chip; 2017 Feb; 17(4):710-716. PubMed ID: 28150821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized Taylor-Aris dispersion in discrete spatially periodic networks: microfluidic applications.
    Dorfman KD; Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021103. PubMed ID: 11863499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow distribution in parallel microfluidic networks and its effect on concentration gradient.
    Guermonprez C; Michelin S; Baroud CN
    Biomicrofluidics; 2015 Sep; 9(5):054119. PubMed ID: 26487905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic method to measure small molecule diffusion in hydrogels.
    Evans SM; Litzenberger AL; Ellenberger AE; Maneval JE; Jablonski EL; Vogel BM
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():322-34. PubMed ID: 24411384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of microfluidic probes for convection enhanced drug delivery.
    Neeves KB; Lo CT; Foley CP; Saltzman WM; Olbricht WL
    J Control Release; 2006 Apr; 111(3):252-62. PubMed ID: 16476500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.
    Jin BJ; Smith AJ; Verkman AS
    J Gen Physiol; 2016 Dec; 148(6):489-501. PubMed ID: 27836940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of microfluidic chip with biomimetic hydrogel for 3D controlling and monitoring of cell alignment and migration.
    Lee KH; Lee KH; Lee J; Choi H; Lee D; Park Y; Lee SH
    J Biomed Mater Res A; 2014 Apr; 102(4):1164-72. PubMed ID: 23630058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Investigation of T-Shaped Microfluidic Oscillator with Viscoelastic Fluid.
    Yuan C; Zhang H; Li X; Oishi M; Oshima M; Yao Q; Li F
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33922099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal vein density in artificial and real leaves.
    Noblin X; Mahadevan L; Coomaraswamy IA; Weitz DA; Holbrook NM; Zwieniecki MA
    Proc Natl Acad Sci U S A; 2008 Jul; 105(27):9140-4. PubMed ID: 18599446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle.
    Christoforidis T; Ng C; Eddington DT
    Biomed Microdevices; 2017 Sep; 19(3):58. PubMed ID: 28646280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel.
    He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach.
    Yao H; Gu WY
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):63-72. PubMed ID: 16767452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation and theory of the diffusion- and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels.
    Morf WE; van der Wal PD; de Rooij NF
    Anal Chim Acta; 2008 Aug; 622(1-2):175-81. PubMed ID: 18602550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of 3D multi-layer microfluidic gradient generator.
    Ha JH; Kim TH; Lee JM; Ahrberg CD; Chung BG
    Electrophoresis; 2017 Jan; 38(2):270-277. PubMed ID: 27801504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned hydrogel microfibers prepared using multilayered microfluidic devices for guiding network formation of neural cells.
    Kitagawa Y; Naganuma Y; Yajima Y; Yamada M; Seki M
    Biofabrication; 2014 Sep; 6(3):035011. PubMed ID: 24876343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A web-based application for automated quantification of chemical gradients induced in microfluidic devices.
    Cóndor M; Rüberg T; Borau C; Piles J; García-Aznar JM
    Comput Biol Med; 2018 Apr; 95():118-128. PubMed ID: 29494849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.