These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28396708)

  • 21. Fabrication of 3D Biomimetic Microfluidic Networks in Hydrogels.
    Heintz KA; Bregenzer ME; Mantle JL; Lee KH; West JL; Slater JH
    Adv Healthc Mater; 2016 Sep; 5(17):2153-60. PubMed ID: 27239785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flattening of Diluted Species Profile via Passive Geometry in a Microfluidic Device.
    Miles M; Bhattacharjee B; Sridhar N; Fajrial AK; Ball K; Lee YC; Stowell MHB; Old WM; Ding X
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31801276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip.
    Yang M; Yang J; Li CW; Zhao J
    Lab Chip; 2002 Aug; 2(3):158-63. PubMed ID: 15100827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical structure.
    Ferrero C; Massuelle D; Jeannerat D; Doelker E
    J Control Release; 2008 May; 128(1):71-9. PubMed ID: 18433910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solute Transport Dependence on 3D Geometry of Hydrogel Networks.
    Richbourg NR; Ravikumar A; Peppas NA
    Macromol Chem Phys; 2021 Aug; 222(16):. PubMed ID: 34456531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical model for the prediction of the overall profile of in vitro solute release from polymer networks.
    Reis AV; Guilherme MR; Rubira AF; Muniz EC
    J Colloid Interface Sci; 2007 Jun; 310(1):128-35. PubMed ID: 17382340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic droplet-based liquid-liquid extraction: online model validation.
    Lubej M; Novak U; Liu M; Martelanc M; Franko M; Plazl I
    Lab Chip; 2015 May; 15(10):2233-9. PubMed ID: 25850663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical design and optimization of hydraulic resistance and wall shear stress inside pressure-driven microfluidic networks.
    Damiri HS; Bardaweel HK
    Lab Chip; 2015 Nov; 15(21):4187-96. PubMed ID: 26351133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic Modeling and Flow Distribution of Complex Micron Scale Pipe Network.
    Zhao Y; Zhang K; Guo F; Yang M
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34203499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instantaneous simulation of fluids and particles in complex microfluidic devices.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.
    Koo HJ; Velev OD
    Biomicrofluidics; 2013 May; 7(3):31501. PubMed ID: 24404020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerated Biofluid Filling in Complex Microfluidic Networks by Vacuum-Pressure Accelerated Movement (V-PAM).
    Yu ZT; Cheung MK; Liu SX; Fu J
    Small; 2016 Sep; 12(33):4521-30. PubMed ID: 27409528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leaf-Inspired Authentically Complex Microvascular Networks for Deciphering Biological Transport Process.
    Miali ME; Colasuonno M; Surdo S; Palomba R; Pereira R; Rondanina E; Diaspro A; Pascazio G; Decuzzi P
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31627-31637. PubMed ID: 31412200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fibrin structural and diffusional analysis suggests that fibers are permeable to solute transport.
    Leonidakis KA; Bhattacharya P; Patterson J; Vos BE; Koenderink GH; Vermant J; Lambrechts D; Roeffaers M; Van Oosterwyck H
    Acta Biomater; 2017 Jan; 47():25-39. PubMed ID: 27717911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue.
    Kang TY; Hong JM; Jung JW; Yoo JJ; Cho DW
    Langmuir; 2013 Jan; 29(2):701-9. PubMed ID: 23234496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.
    Jeong GS; Kwon GH; Kang AR; Jung BY; Park Y; Chung S; Lee SH
    Biomed Microdevices; 2011 Aug; 13(4):717-23. PubMed ID: 21494794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic design of microfluidic manifolds based on a generalised Murray's law.
    Emerson DR; Cieślicki K; Gu X; Barber RW
    Lab Chip; 2006 Mar; 6(3):447-54. PubMed ID: 16511629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Green's function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries.
    Secomb TW
    Math Med Biol; 2016 Dec; 33(4):475-494. PubMed ID: 26443811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered 3D tissue models for cell-laden microfluidic channels.
    Song YS; Lin RL; Montesano G; Durmus NG; Lee G; Yoo SS; Kayaalp E; Haeggström E; Khademhosseini A; Demirci U
    Anal Bioanal Chem; 2009 Sep; 395(1):185-93. PubMed ID: 19629459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic 3D Helix Mixers.
    Salieb-Beugelaar GB; Gonçalves D; Wolf MP; Hunziker P
    Micromachines (Basel); 2016 Oct; 7(10):. PubMed ID: 30404361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.