These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28397391)

  • 21. Formation, growth and applications of femtoliter droplets on a microlens.
    Lei L; Li J; Yu H; Bao L; Peng S; Zhang X
    Phys Chem Chem Phys; 2018 Feb; 20(6):4226-4237. PubMed ID: 29364296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of surface nanodroplets facing a structured microchannel wall.
    Yu H; Maheshwari S; Zhu J; Lohse D; Zhang X
    Lab Chip; 2017 Apr; 17(8):1496-1504. PubMed ID: 28345085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanopressing: toward tailored polymer microstructures and nanostructures.
    Kao YH; Chi MH; Tsai CC; Chen JT
    Macromol Rapid Commun; 2014 Jan; 35(1):84-90. PubMed ID: 24282065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tunable wetting of polymer surfaces.
    Yilgor I; Bilgin S; Isik M; Yilgor E
    Langmuir; 2012 Oct; 28(41):14808-14. PubMed ID: 22989033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanodroplets on rough hydrophilic and hydrophobic surfaces.
    Yang C; Tartaglino U; Persson BN
    Eur Phys J E Soft Matter; 2008 Feb; 25(2):139-52. PubMed ID: 18311474
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of Body Stance in Fog Droplet Collection by the Namib Desert Beetle.
    Chakrabarti U; Paoli R; Chatterjee S; Megaridis CM
    Biomimetics (Basel); 2019 Aug; 4(3):. PubMed ID: 31466234
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-Step Fabrication of Droplet Arrays Using a Biomimetic Structural Chip.
    Du L; Li Y; Zhang X; Zhou Z; Wang Y; Jing D; Zhou J
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17413-17420. PubMed ID: 36972187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fog collecting biomimetic surfaces: Influence of microstructure and wettability.
    Azad MA; Ellerbrok D; Barthlott W; Koch K
    Bioinspir Biomim; 2015 Jan; 10(1):016004. PubMed ID: 25599517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoengineered multiscale hierarchical structures with tailored wetting properties.
    Jeong HE; Lee SH; Kim JK; Suh KY
    Langmuir; 2006 Feb; 22(4):1640-5. PubMed ID: 16460085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of surface nanodroplets under controlled flow conditions.
    Zhang X; Lu Z; Tan H; Bao L; He Y; Sun C; Lohse D
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9253-7. PubMed ID: 26159418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Engineered Wettability on the Efficiency of Dew Collection.
    Gerasopoulos K; Luedeman WL; Ölçeroglu E; McCarthy M; Benkoski JJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4066-4076. PubMed ID: 29297673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anisotropic wetting of microstructured surfaces as a function of surface chemistry.
    Neuhaus S; Spencer ND; Padeste C
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):123-30. PubMed ID: 22148671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anisotropic Wettability on One-Dimensional Nanopatterned Surfaces: The Effects of Intrinsic Surface Wettability and Morphology.
    Park JH; Shin BS; Jabbarzadeh A
    Langmuir; 2021 Dec; 37(48):14186-14194. PubMed ID: 34807615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Underwater superoleophilic to superoleophobic wetting control on the nanostructured copper substrates.
    Cheng Z; Lai H; Du Y; Fu K; Hou R; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11363-70. PubMed ID: 24083992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.
    Garimella MM; Koppu S; Kadlaskar SS; Pillutla V; Abhijeet ; Choi W
    J Colloid Interface Sci; 2017 Nov; 505():1065-1073. PubMed ID: 28715857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-Dimensionally Structured Flexible Fog Harvesting Surfaces Inspired by Namib Desert Beetles.
    Park JK; Kim S
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30909375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting.
    Koch K; Bennemann M; Bohn HF; Albach DC; Barthlott W
    Bioinspir Biomim; 2013 Sep; 8(3):036005. PubMed ID: 23838014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Universal Model for the Maximum Spreading Factor of Impacting Nanodroplets: From Hydrophilic to Hydrophobic Surfaces.
    Wang YB; Wang YF; Gao SR; Yang YR; Wang XD; Chen M
    Langmuir; 2020 Aug; 36(31):9306-9316. PubMed ID: 32697096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.