BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 28397417)

  • 1. Material and Compression Properties of Cedrela odorata Gum Co-Processed with Plantain Starch and Microcrystalline Cellulose.
    Adetunji OA; Odeniyi MA
    Polim Med; 2016; 46(1):35-43. PubMed ID: 28397417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA
    Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow, packing and compaction properties of novel coprocessed multifunctional directly compressible excipients prepared from tapioca starch and mannitol.
    Adeoye O; Alebiowu G
    Pharm Dev Technol; 2014 Dec; 19(8):901-10. PubMed ID: 24089696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance.
    Rojas J; Buckner I; Kumar V
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1159-70. PubMed ID: 22966909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical properties and compact analysis of commonly used direct compression binders.
    Zhang Y; Law Y; Chakrabarti S
    AAPS PharmSciTech; 2003 Dec; 4(4):E62. PubMed ID: 15198557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An update on microcrystalline cellulose in direct compression: Functionality, critical material attributes, and co-processed excipients.
    Zhao H; Zhao L; Lin X; Shen L
    Carbohydr Polym; 2022 Feb; 278():118968. PubMed ID: 34973783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New direct compression excipient from tigernut starch: physicochemical and functional properties.
    Builders PF; Anwunobi PA; Mbah CC; Adikwu MU
    AAPS PharmSciTech; 2013 Jun; 14(2):818-27. PubMed ID: 23649994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Optimization of a Starch-Based Co-processed Excipient for Direct Compression Using Mixture Design.
    Apeji YE; Oyi AR; Isah AB; Allagh TS; Modi SR; Bansal AK
    AAPS PharmSciTech; 2018 Feb; 19(2):866-880. PubMed ID: 29038987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of processing variables on the mechanical and release properties of tramadol matrix tablets incorporating Cissus populnea gum as controlled release excipient.
    Adeleye OA; Femi-Oyewo MN; Odeniyi MA
    Polim Med; 2014; 44(4):209-20. PubMed ID: 25932902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IDENTIFICATION OF PHARMACEUTICAL EXCIPIENT BEHAVIOR OF CHICKPEA (CICER ARIETINUM) STARCH IN GLICLAZIDE IMMEDIATE RELEASE TABLETS.
    Meka VS; Yee P; Sheshala R
    Acta Pol Pharm; 2016; 73(2):469-78. PubMed ID: 27180440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native and microwave-modified Terminalia mantaly gums as sustained-release and bioadhesive excipients in naproxen matrix tablet formulations.
    Odeniyi MA; Oyedokun BM; Bamiro OA
    Polim Med; 2017; 47(1):35-42. PubMed ID: 29160627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: establishment of level A IVIVC.
    Sankalia JM; Sankalia MG; Mashru RC
    J Control Release; 2008 Jul; 129(1):49-58. PubMed ID: 18456362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Apparent" Young's elastic modulus and radial recovery for some tableted pharmaceutical excipients.
    Kachrimanis K; Malamataris S
    Eur J Pharm Sci; 2004 Feb; 21(2-3):197-207. PubMed ID: 14757491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on new co-processed excipient consisting of lactose and gelatinized starch].
    Wang ST; Zhang J; Lin X; Shen L; Feng Y
    Zhongguo Zhong Yao Za Zhi; 2014 Nov; 39(22):4329-34. PubMed ID: 25850261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the material and tablet formation properties of modified forms of Dioscorea starches.
    Odeku OA; Picker-Freyer KM
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1389-406. PubMed ID: 19832640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near IR spectroscopy to quantify the silica content and difference between silicified microcrystalline cellulose and physical mixtures of microcrystalline cellulose and silica.
    Buckton G; Yonemochi E
    Eur J Pharm Sci; 2000 Mar; 10(1):77-80. PubMed ID: 10699385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of modification and incorporation techniques on disintegrant properties of wheat (Triticum aestivum) starch in metronidazole tablet formulations.
    Odeniyi MA; Ayorinde JO
    Polim Med; 2014; 44(3):147-55. PubMed ID: 25696939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material and tablet properties of pregelatinized (thermally modified) Dioscorea starches.
    Odeku OA; Schmid W; Picker-Freyer KM
    Eur J Pharm Biopharm; 2008 Sep; 70(1):357-71. PubMed ID: 18562187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression.
    Capece M; Huang Z; Davé R
    J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.