These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 28397417)

  • 21. Effects of pigeon pea and plantain starches on the compressional, mechanical, and disintegration properties of paracetamol tablets.
    Dare K; Akin-Ajani DO; Odeku OA; Itiola OA; Odusote OM
    Drug Dev Ind Pharm; 2006 Mar; 32(3):357-65. PubMed ID: 16556540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and Characterization of Multifunctional Directly Compressible Co-processed Excipient by Spray Drying Method.
    Chauhan SI; Nathwani SV; Soniwala MM; Chavda JR
    AAPS PharmSciTech; 2017 May; 18(4):1293-1301. PubMed ID: 27480443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Powder and compaction characteristics of pregelatinized starches.
    Rojas J; Uribe Y; Zuluaga A
    Pharmazie; 2012 Jun; 67(6):513-7. PubMed ID: 22822539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of agglomerated directly compressible diluent consisting of brittle and ductile materials.
    Gohel MC; Jogani PD; Bariya SE
    Pharm Dev Technol; 2003; 8(2):143-51. PubMed ID: 12760565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mung bean (Vigna radiata) porous starch for solubility and dissolution enhancement of poorly soluble drug by solid dispersion.
    Nadaf S; Jadhav A; Killedar S
    Int J Biol Macromol; 2021 Jan; 167():345-357. PubMed ID: 33253744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-processed MCC-Eudragit® E excipients for extrusion-spheronization.
    Goyanes A; Souto C; Martínez-Pacheco R
    Eur J Pharm Biopharm; 2011 Nov; 79(3):658-63. PubMed ID: 21827853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of traditional and novel tableting excipients: physical and compaction properties.
    Hentzschel CM; Sakmann A; Leopold CS
    Pharm Dev Technol; 2012; 17(6):649-53. PubMed ID: 21740091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of pellets via extrusion-spheronisation without the incorporation of microcrystalline cellulose: a critical review.
    Dukić-Ott A; Thommes M; Remon JP; Kleinebudde P; Vervaet C
    Eur J Pharm Biopharm; 2009 Jan; 71(1):38-46. PubMed ID: 18771727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of compression pressure, preservative, and storage with potassium chloride on the microbiological quality of tablets formulated with Terminalia randii Gum (Combretaceae).
    Oluremi BB; Bamiro OA; Idowu AO; Oduneye OA
    Pak J Pharm Sci; 2012 Oct; 25(4):773-6. PubMed ID: 23009993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the impact of HPMC viscosity grade and proportion on the physical properties of co-freeze-dried mannitol-HPMC tableting excipients using multivariate analysis methods.
    Siow CRS; Tang DS; Heng PWS; Chan LW
    Int J Pharm; 2019 Feb; 556():246-262. PubMed ID: 30529666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study of a co-processed dry binder composed of microcrystalline cellulose and glycerol monostearate.
    Mužíková J; Muchová S
    Ceska Slov Farm; 2012 Oct; 61(5):229-33. PubMed ID: 23256656
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation.
    Buckton G; Yonemochi E; Yoon WL; Moffat AC
    Int J Pharm; 1999 Apr; 181(1):41-7. PubMed ID: 10370201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability.
    Thoorens G; Krier F; Rozet E; Carlin B; Evrard B
    Int J Pharm; 2015 Jul; 490(1-2):47-54. PubMed ID: 25981619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extraction and characterization of artocarpus integer gum as pharmaceutical excipient.
    Farooq U; Malviya R; Sharma PK
    Polim Med; 2014; 44(2):69-74. PubMed ID: 24967778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of processing methods on xylitol-starch base co-processed adjuvant for orally disintegrating tablet application.
    Bin LK; Helaluddin ABM; Islam Sarker MZ; Mandal UK; Gaurav A
    Pak J Pharm Sci; 2020 Mar; 33(2):551-559. PubMed ID: 32276897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct compression high functionality excipient using coprocessing technique: a brief review.
    Mirani AG; Patankar SP; Borole VS; Pawar AS; Kadam VJ
    Curr Drug Deliv; 2011 Jul; 8(4):426-35. PubMed ID: 21235470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of dry heating and ionic gum on the physicochemical and release properties of starch from Dioscorea.
    Vashisht D; Pandey A; Hermenean A; Yáñez-Gascón MJ; Pérez-Sánchez H; Kumar KJ
    Int J Biol Macromol; 2017 Feb; 95():557-563. PubMed ID: 27871789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the type of cellulose on properties of multi-unit target releasing in stomach dosage form with verapamil hydrochloride.
    Sawicki W; Łunio R; Walentynowicz O; Kubasik-Juraniec J
    Acta Pol Pharm; 2007; 64(1):81-8. PubMed ID: 17665855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of novel microcrystalline cellulose from Ensete glaucum (Roxb.) Cheesman biomass as sustainable drug delivery biomaterial.
    Pachuau L; Dutta RS; Hauzel L; Devi TB; Deka D
    Carbohydr Polym; 2019 Feb; 206():336-343. PubMed ID: 30553330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. True density of microcrystalline cellulose.
    Sun CC
    J Pharm Sci; 2005 Oct; 94(10):2132-4. PubMed ID: 16136576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.