BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28397791)

  • 1. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species.
    Zhang Y; Sun J; Chen C; Watanabe HK; Feng D; Zhang Y; Chiu JM; Qian PY; Qiu JW
    Sci Rep; 2017 Apr; 7():46205. PubMed ID: 28397791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeny, evolution and mitochondrial gene order rearrangement in scale worms (Aphroditiformia, Annelida).
    Zhang Y; Sun J; Rouse GW; Wiklund H; Pleijel F; Watanabe HK; Chen C; Qian PY; Qiu JW
    Mol Phylogenet Evol; 2018 Aug; 125():220-231. PubMed ID: 29625228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms.
    Projecto-Garcia J; Le Port AS; Govindji T; Jollivet D; Schaeffer SW; Hourdez S
    J Mol Evol; 2017 Dec; 85(5-6):172-187. PubMed ID: 29094190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomic analysis of deep- and shallow-water barnacle species (Cirripedia, Poecilasmatidae) provides insights into deep-sea adaptation of sessile crustaceans.
    Gan Z; Yuan J; Liu X; Dong D; Li F; Li X
    BMC Genomics; 2020 Mar; 21(1):240. PubMed ID: 32183697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Analysis of a Scale Worm Provides Insights into Its Adaptation to Deep-Sea Hydrothermal Vents.
    He X; Wang H; Xu T; Zhang Y; Chen C; Sun Y; Qiu JW; Zhou Y; Sun J
    Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37401460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.
    Lan Y; Sun J; Xu T; Chen C; Tian R; Qiu JW; Qian PY
    BMC Genomics; 2018 May; 19(1):394. PubMed ID: 29793428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new species and new record of deep-sea scale-worms (Polynoidae: Polychaeta) from the Okinawa Trough and the South China Sea.
    Sui J; Li X
    Zootaxa; 2017 Mar; 4238(4):562-570. PubMed ID: 28603250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into deep-sea adaptations and host-symbiont interactions: A comparative transcriptome study on Bathymodiolus mussels and their coastal relatives.
    Zheng P; Wang M; Li C; Sun X; Wang X; Sun Y; Sun S
    Mol Ecol; 2017 Oct; 26(19):5133-5148. PubMed ID: 28437568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Six new species of Macellicephala (Annelida: Polynoidae) from the Southern Ocean and south Atlantic with re-description of type species.
    Neal L; Brasier MJ; Wiklund H
    Zootaxa; 2018 Aug; 4455(1):1-34. PubMed ID: 30314219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological convergence and adaptation in cave and pelagic scale worms (Polynoidae, Annelida).
    Gonzalez BC; Martínez A; Worsaae K; Osborn KJ
    Sci Rep; 2021 May; 11(1):10718. PubMed ID: 34021174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transcriptome-based phylogeny for Polynoidae (Annelida: Aphroditiformia).
    Gonzalez BC; González VL; Martínez A; Worsaae K; Osborn KJ
    Mol Phylogenet Evol; 2023 Aug; 185():107811. PubMed ID: 37169231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular adaptation in the world's deepest-living animal: Insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas.
    Lan Y; Sun J; Tian R; Bartlett DH; Li R; Wong YH; Zhang W; Qiu JW; Xu T; He LS; Tabata HG; Qian PY
    Mol Ecol; 2017 Jul; 26(14):3732-3743. PubMed ID: 28429829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hungry scale worms: Phylogenetics of
    Hatch AS; Liew H; Hourdez S; Rouse GW
    Zookeys; 2020; 932():27-74. PubMed ID: 32476973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-terminal amino acid sequences of 440 kDa hemoglobins of the deep-sea tube worms, Lamellibrachia sp.1, Lamellibrachia sp.2 and slender vestimentifera gen. sp.1 evolutionary relationship with annelid hemoglobins.
    Suzuki T; Takagi T; Ohta S
    Zoolog Sci; 1993 Feb; 10(1):141-6. PubMed ID: 7763791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes.
    Wang Y; Yang L; Zhou K; Zhang Y; Song Z; He S
    Genome Biol Evol; 2015 Oct; 7(11):2970-82. PubMed ID: 26454018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First mitochondrial genomes of Chrysopetalidae (Annelida) from shallow-water and deep-sea chemosynthetic environments.
    Cejp B; Ravara A; Aguado MT
    Gene; 2022 Mar; 815():146159. PubMed ID: 34995739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes.
    Wang Y; Yang L; Wu B; Song Z; He S
    Gene; 2015 Jul; 565(2):211-20. PubMed ID: 25869933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents.
    Gaill F; Mann K; Wiedemann H; Engel J; Timpl R
    J Mol Biol; 1995 Feb; 246(2):284-94. PubMed ID: 7869380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection.
    Bailly X; Leroy R; Carney S; Collin O; Zal F; Toulmond A; Jollivet D
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5885-90. PubMed ID: 12721359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two new species of Branchinotogluma (Polynoidae: Annelida) from chemosynthesis-based ecosystems in Japan.
    Jimi N; Chen C; Fujiwara Y
    Zootaxa; 2022 May; 5138(1):17-30. PubMed ID: 36101041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.